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 A B S T R A C T

Piezoelectric actuators (PEAs) are critical in precision motion applications due to their high precision and fast 
response. Existing control methods for PEAs rely heavily on the accurate model integrated in the controllers 
to realize the precision motion tracking. However, complicated dynamics and inherent hysteresis nonlinearity 
bring challenges in modeling and identification. The accompanying model uncertainties bring difficulties for 
the rapid convergence of the tracking error and precision motion tracking of PEAs in the application. To 
overcome these limitations, this paper proposes an adaptive neural network fixed-time control (ANNFTC) 
scheme. The ANNFTC integrates the backstepping method and online neural network compensation, both 
designed according to the practical fixed-time stability. Unlike the fixed-time control (FTC) and related works, 
ANNFTC requires no prior knowledge of hysteresis while ensuring robustness to external disturbance and 
model uncertainties, including unmodeled dynamics and hysteresis nonlinearity. Rigorous proof of practical 
fixed-time convergence for the tracking error is provided, along with comprehensive experimental validation 
conducted on a PEA. The experimental campaign encompasses reference tracking across frequencies ranging 
from 1 to 10 Hz and peak-to-peak amplitudes from 1 to 9 μm, as well as hybrid-frequency sinusoidal tracking 
in the presence of input disturbances. Experimental results show that compared to other tested FTCs, ANNFTC 
achieves better tracking accuracy and more rapid convergence time of tracking error under different initial 
states, the existence of model uncertainties, and the external disturbance.
1. Introduction

Precision motion tracking has gained increasing significance with 
the rapid growth of micro/nano applications, such as semiconduc-
tor equipments [1], medical devices [2], aeronautical actuation sys-
tems [3], and related fields. Piezoelectric actuators (PEAs) are widely 
utilized in these precision motion systems due to their high preci-
sion, resolution, fast response, and compact structure [4]. However, 
the motion accuracy of PEAs is degraded by inherent nonlinearities 
(e.g., creep, hysteresis) [5] and other model uncertainties in controllers 
(e.g., unmodeled dynamics and parameter perturbation) [6,7].

For nonlinearities compensation of PEAs, several effective approa
ches have been proposed for model-based feedforward controller de-
sign [7,8]. However, feedforward schemes alone are not robust to 
model uncertainties, as identified nominal models fail to accurately 
reflect the real system. In contrast, feedback control methods, which 
are more robust without requiring a precise mathematical model of the 
PEA, have been explored to improve motion accuracy [9,10]. Within 
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feedback control strategies, tracking performance can be ensured by 
treating the nonlinearities as unknown disturbances [5]. Lyapunov-
based techniques, such as backstepping control, can guarantee the 
stability and tracking accuracy of nonlinear systems like PEAs [11].

However, to the best of our knowledge, most of the feedback control 
on PEA’s precision motion tracking focuses primarily on achieving 
asymptotic stability, which means achieving zero tracking error only 
after an infinite amount of time. This does not meet the practical 
requirements of engineering applications. From a practical perspective, 
the settling time is a critical performance metric for time-sensitive sys-
tems, as it characterizes the speed at which the system converges [12]. 
To address this limitation, finite-time control [13], fixed-time con-
trol (FTC) [14–16] and prescribed-time control (PTC) [17,18] have 
emerged as prominent approaches within the control community. In 
contrast to finite-time control, both FTC and PTC ensure convergence 
without dependence on the initial conditions. Compared with FTC, PTC 
offers a distinct advantage in that its settling time can be precisely 
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preset, whereas that of FTC tends to be overestimated. Moreover, 
the settling time in FTC is not an independent tunable parameter, 
as it inherently depends on other controller design parameters. How-
ever, PTC often suffers from input saturation, higher online compu-
tational demands, and challenges in incorporating adaptive control 
mechanisms [13]. By comparison, although FTC only ensures that the 
convergence time remains below a predetermined upper bound, it gen-
erally exhibits simpler controller design, lower real-time computational 
requirements, and greater compatibility with adaptive control strate-
gies, making it more amenable to practical engineering applications. 
FTC enables finite-time convergence of system dynamics regardless of 
the initial condition if the following inequality 𝑉̇ (𝑥) ≤ −𝛼𝑉 𝑝(𝑥) −
𝛽𝑉 𝑞(𝑥) holds [19]. Nevertheless, when system uncertainty is consid-
ered, achieving fixed-time convergence becomes challenging because 
the uncertainty makes it difficult to satisfy the inequality conditions 
previously discussed [12]. To address this issue, [20] proposed the 
concept of practically fixed-time stability, which relaxes the conditions 
of the above FTC inequality.

Due to priority in practical use, FTC is integrated with sliding 
mode control (SMC) for the tracking control [21–23]. For the pre-
cision motion of the PEAs, [15] developed a local fixed-time SMC 
with an adaptive disturbance observer for a PEA system with unmod-
eled uncertainties. This controller demonstrates superior robustness 
and tracking accuracy compared to existing SMC. However, a lim-
itation is that it requires explicit knowledge of the hysteresis part, 
ℎ(𝑡), which complicates controller parameter tuning and design. [16] 
proposed a fast fixed-time adaptive SMC method that exhibits excellent 
dynamic tracking performance, steady-state behavior, and robustness 
to lumped disturbances. Nevertheless, this approach involves many 
adjustable parameters, requiring not only a system model that incor-
porates the explicit hysteresis part but also parameters for both the 
FTC and SMC. Meanwhile, SMC appears less suitable for PEA systems 
due to their rapid motion, significant model uncertainties, and lightly 
damped dynamics—factors that can induce control chattering and com-
plicate SMC design. In summary, the aforementioned FTC methods 
for PEAs require sufficient prior knowledge of the system’s dynamics 
and hysteresis nonlinearity. The implementation of this method entails 
increased controller complexity and poses subsequent challenges for 
parameter identification and tuning.

In cases where a system is entirely unknown or uncertain, neural 
networks (NN) perform online estimation of unknown nonlinear dy-
namics [24–26]. With respect to these circumstances, the FTC with NN 
compensation seems more suitable for realizing practically fixed-time 
stability to nonlinear systems like PEAs with disturbance and uncer-
tainty. Several existing studies have investigated NN-based FTC for 
nonlinear systems [27–30]. However, the adaptive laws for NN weights 
proposed in [27–29] only ensure asymptotic stability. This limitation 
fails to theoretically guarantee simultaneous convergence of NN weight 
estimation errors and system state errors, often resulting in slower 
convergence rates and degraded tracking performance in the presence 
of transient disturbances. Although the adaptive law introduced in [30] 
incorporates a fixed-time convergence term, it utilizes a hyperbolic 
tangent (tanh) function whose argument depends on the product of 
the norm of the network basis function vector and the state error. This 
formulation is susceptible to saturation effects when either the error 
magnitude or the norm of the basis function vector is large, ultimately 
impairing convergence speed. Hence, a modified NN weights adaptive 
law with the fixed-time and rapid convergence property needs to be 
developed for PEAs.

Motivated by the aforementioned essential issues, a novel adaptive 
neural network fixed-time control (ANNFTC) scheme is developed in 
this work to enable high-precision and rapid convergence of track-
ing error of PEAs under the existence of external disturbance and 
model uncertainties, including: (1) complex hysteresis nonlinearity and 
(2) unmodeled dynamics. The main contributions of this paper are 
summarized below:
247 
∙ A modified adaptive neural network control scheme with a novel 
NN weights update law is developed to realize the fixed-time conver-
gence of tracking error. The only prior knowledge required for the 
controller is a standard second-order LTI model of the PEA, which is 
easy to identify and gain. A detailed theoretical proof of the controller 
design and practical fixed-time convergence is provided.

∙ Through an elaborate design, the proposed ANNFTC effectively 
handles the issues of nonlinearities, unmodeled dynamics, and external 
disturbance. For practical implementation, the state variables required 
by the control law are filtered with a stable filter, eliminating the 
need for a state observer and simplifying the control scheme. Detailed 
discussions on the proposed ANNFTC’s performance are conducted via 
comprehensive experiments, along with comparisons to other FTCs, to 
illustrate the superiority of the proposed method.

The overall structure of the paper is outlined as follows. Section 2 
introduces several essential lemmas needed in the controller design and 
the problem formulation. Section 3 gives the presentation of the pro-
posed ANNFTC and its detailed practical fixed-time convergence proof. 
Section 4 provides a preliminary simulation of error convergence using 
ANNFTC, along with comparison results from the other controllers, 
including traditional FTC, the widely-used PID controller, and the 
finite-time control. Section 5 elaborates on the experiential setup and 
the closed-loop experiments with ANNFTC on the PEA, comparing the 
tracking performance and hysteresis compensation with the traditional 
FTC and the adaptive FTC with NN (AFTC) in [27]. Finally, Section 6 
presents the conclusions.

2. Preliminaries and problem formulation

2.1. Preliminaries

This section firstly introduces some key lemmas related to fixed-time 
control, which are required in the proof process of the proposed method 
in this paper.

Lemma 1 ([27]). Consider the nonlinear system as follows 
𝑥̇(𝑡) = 𝑓 (𝑥(𝑡)), 𝑥(0) = 𝑥0. (1)

If there exists a selected Lyapunov function 𝑉 (𝑥) with some design constants, 
𝛼, 𝛽 > 0, 𝑝 > 1, 0 < 𝑞 < 1, 0 < 𝜂 < ∞ such that 
𝑉̇ (𝑥) ≤ −𝛼𝑉 𝑝(𝑥) − 𝛽𝑉 𝑞(𝑥) + 𝜂, (2)

then with a constant 0 < 𝜓 < 1 introduced, the state of this system in Eq. (1) 
is practical fixed-time stable for any initial condition 𝑥0 and the settling time 
𝑇  is estimated by 

𝑇 ≤ 𝑇max =
1

𝛼𝜓(𝑝 − 1)
+ 1
𝛽𝜓(1 − 𝑞)

. (3)

The residual set of the solution of the system 𝑥̇ = 𝑓 (𝑥) is given by 

𝑥 ∈
{

𝑉 (𝑥) ≤ min
{

( 𝜂
(1 − 𝜓)𝛼

)1∕𝑝
,
( 𝜂

(1 − 𝜓)𝛽

)1∕𝑞
}}

. (4)

Lemma 2 (Young’s Inequality). For 𝑎, 𝑏 > 0, 𝑝 > 1, 1∕𝑝 + 1∕𝑞 = 1, the 
following inequality holds 

𝑎𝑏 ≤ 𝑎𝑝

𝑝
+ 𝑏𝑞

𝑞
. (5)

Lemma 3 (Cauchy–Schwarz Inequality). : For 𝑥, 𝑦 ∈ R𝑛, the following 
inequality holds 
|𝑥⊤𝑦|2 ≤ 𝑥⊤𝑥 ⋅ 𝑦⊤𝑦. (6)

Lemma 4 ([31]). For real variables 𝑧 and 𝜁 , and any positive constants 𝜇, 
𝜂 and 𝜄, the following inequality is true: 

|𝑧|𝜇|𝜁 |𝜂 ≤ 𝜇
𝜇 + 𝜂

𝜄|𝑧|𝜇+𝜂 +
𝜂

𝜇 + 𝜂
𝜄−

𝜇
𝜂
|𝜁 |𝜇+𝜂 . (7)
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Lemma 5 ([14]). For ℎ > 0, 𝑥 ≥ 0, 𝑦 ≥ 0, the following inequality holds 

𝑥ℎ(𝑦 − 𝑥) ≤ 1
1 + ℎ

(𝑦1+ℎ − 𝑥1+ℎ). (8)

Lemma 6 ([14]). For ℎ > 1, 𝑥 > 0, 𝑦 ≤ 𝑥, 𝑦 ∈ R, it holds that 
(𝑥 − 𝑦)ℎ ≥ 𝑦ℎ − 𝑥ℎ. (9)

Lemma 7 ([32]). For any real numbers 𝑥𝑖, 𝑖 = 1,… , 𝑛 and 0 < 𝑏 < 1, the 
following inequality holds: 
(|𝑥1| +⋯ + |𝑥𝑛|)𝑏 ≤ |𝑥1|

𝑏 +⋯ + |𝑥𝑛|
𝑏. (10)

Lemma 8 ([33]). For all positive numbers 𝑥𝑖, 𝑖 = 1, 2,… , 𝑛, it holds 
𝑛
∑

𝑖=1
𝑥𝛾𝑖 ≥

(

𝑛
∑

𝑖=1
𝑥𝑖

)

𝛾

, 0 < 𝛾 < 1,

𝑛
∑

𝑖=1
𝑥𝛾𝑖 ≥ 𝑛1−𝛾

(

𝑛
∑

𝑖=1
𝑥𝑖

)

𝛾

, 𝛾 > 1.

(11)

2.2. Problem formulation

Consider the following second-order system of a PEA to be con-
trolled, 
𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝑇 𝑢 + 𝑓, (12)

where 𝑚, 𝑐, 𝑘 are the equivalent mass, damping, and stiffness. 𝑥 is 
the output displacement of the PEA, 𝑥̇ and 𝑥̈ are the velocity and 
acceleration, respectively. 𝑢 is the input signal to actuate the PEA and 
𝑇  is the electromechanical ratio, and 𝑓 are the unknown disturbances 
which is caused by the model uncertainties in this paper.

Define 𝑥1 = 𝑥, 𝑥2 = 𝑥̇, the system dynamic is reformulated by 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥̇1 = 𝑥2,

𝑥̇2 = − 𝑐
𝑚
𝑥2 −

𝑘
𝑚
𝑥1 +

𝑇
𝑚
𝑢 + 1

𝑚
𝑓

= −𝑎2𝑥2 − 𝑎1𝑥1 + 𝑏𝑢 + 𝑑.

(13)

The goal of this paper is to design an adaptive controller with fixed-time 
convergence for the aforementioned second-order system of a PEA.

3. Adaptive neural network fixed-time control

To realize the adaptive fixed-time control of the PEA system in 
Eq. (13), two error variables, denoted as 𝑧1 = 𝑥1−𝑥𝑑 , 𝑧2 = 𝑥2−𝜈, where 
𝑥𝑑 is the reference signal, 𝜈 represents a virtual term, are introduced. 
Then, the tracking error dynamics are represented by 
{

𝑧̇1 = 𝑥̇1 − 𝑥̇𝑑 = 𝑧2 + 𝜈 − 𝑥̇𝑑 ,

𝑧̇2 = 𝑥̇2 − 𝜈̇ = −𝑎2𝑥2 − 𝑎1𝑥1 + 𝑏𝑢 + 𝑑 − 𝜈̇.
(14)

Next, use the backstepping method to deduce the control law, which 
can be divided into three steps as follows:

Step 1: Define Lyapunov function 𝑉1 = 𝑧21∕2, the time derivative of 
𝑉1 is computed as 
𝑉̇1 = 𝑧1𝑧̇1 = 𝑧1(𝑧2 + 𝜈 − 𝑥̇𝑑 ). (15)

The virtual term 𝜈 is designed as 
𝜈 = −𝑘1|𝑧1|

𝛼sign(𝑧1) − 𝑘2|𝑧1|2𝛽+1sign(𝑧1) + 𝑥̇𝑑 ,
0 < 𝛼 < 1, 𝛽 ∈ N+.

(16)

Then, substitute Eq. (16) into Eq. (15), one can obtain 

𝑉̇1 =𝑧1
(

𝑧2 − 𝑘1|𝑧1|
𝛼sign(𝑧1) − 𝑘2|𝑧1|2𝛽+1sign(𝑧1)+

𝑥̇ − 𝑥̇
)

= −𝑘 |𝑧 |

𝛼+1 − 𝑘 |𝑧 |

2(𝛽+1) + 𝑧 𝑧 .
(17)
𝑑 𝑑 1 1 2 1 1 2
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Step 2: Define Lyapunov function 𝑉2 = 𝑧22∕2, the time derivative of 
𝑉2 is computed as 

𝑉̇2 = 𝑧2𝑧̇2 = 𝑧2
(

−𝑎2𝑥2 − 𝑎1𝑥1 + 𝑏𝑢 + 𝑑 − 𝜈̇
)

. (18)

Then, the control law is designed as 

𝑢 = 1
𝑏

(

𝜈̇ + 𝑎2𝑥2 + 𝑎1𝑥1 − 𝑧1 − 1∕2𝑧2

− 𝑘3|𝑧2|
𝛼sign(𝑧2) − 𝑘4|𝑧2|2𝛽+1sign(𝑧2) + 𝜑𝑎

)

,
(19)

where 𝜑𝑎 is the adaptive term to be determined. Substitute Eq. (19) 
into Eq. (18), one can obtain 

𝑉̇2 =𝑧2
(

−𝑎2𝑥2 − 𝑎1𝑥1 + 𝜈̇ + 𝑎2𝑥2 + 𝑎1𝑥1 − 𝑧1−

1∕2𝑧2 − 𝑘3|𝑧2|
𝛼sign(𝑧2) − 𝑘4|𝑧2|2𝛽+1sign(𝑧2) + 𝜑𝑎

+ 𝑑 − 𝜈̇
)

= −𝑧1𝑧2 −
1
2
𝑧22 − 𝑘3|𝑧2|

𝛼+1 − 𝑘4|𝑧2|
2(𝛽+1)

+ 𝑧2𝜑𝑎 + 𝑧2𝑑.

(20)

Then, add Eqs.  (17) and (20), one can obtain 
𝑉̇1 + 𝑉̇2 = − 𝑘1|𝑧1|

𝛼+1 − 𝑘2|𝑧1|
2(𝛽+1) − 𝑘3|𝑧2|

𝛼+1−

𝑘4|𝑧2|
2(𝛽+1) − 1

2
𝑧22 + 𝑧2𝜑𝑎 + 𝑧2𝑑.

(21)

Step 3: Here, the NN-based adaptive control law is to be designed. 
Supposing the number 𝑛 of the node is chosen large enough, the 
disturbance 𝑑 in Eq. (13) is calculated as 

𝑑 = 𝑓 (𝑋) = 𝑊 ⊤𝜓(𝑋) + 𝜖, |𝜖| ≤ 𝜖, (22)

and make 

𝜃 = 𝑊 ⊤𝑊 , 𝜃 = 𝜃 − 𝜃̂. (23)

Theorem 1. For the system in Eq. (13), if the adaptive law is given as 

𝜑𝑎 = − 1
2𝜇2

𝑧2𝜓(𝑋)⊤𝜓(𝑋)𝜃̂,

̇̂𝜃 =𝛾
( 1

2𝜇2
𝑧22𝜓(𝑋)⊤𝜓(𝑋) − 2𝜎1𝜃̂ − 𝜎2𝜃̂2𝛽+1

)

,

𝜃̂ =

{

∫ ̇̂𝜃𝑑𝑡,  if 𝜃̂ ≥ 0
0,  if 𝜃̂ < 0,

(24)

and the control law is Eq. (19), the practical fixed-time stability can be 
achieved. The constraints of the 𝜃̂ here is used to ensure the value of 𝜃̂ is 
nonnegative, which is crucial for the subsequent proof.

Proof. Substitute Eq. (24) into Eq. (21), one can obtain 
𝑉̇1 + 𝑉̇2 = − 𝑘1|𝑧1|

𝛼+1 − 𝑘2|𝑧1|
2(𝛽+1) − 𝑘3|𝑧2|

𝛼+1+

𝑧2𝜑𝑎 + 𝑧2𝑑 = −𝑘1|𝑧1|
𝛼+1 − 𝑘2|𝑧1|

2(𝛽+1)−

𝑘3|𝑧2|
𝛼+1 − 𝑘4|𝑧2|

2(𝛽+1) − 1
2
𝑧22−

1
2𝜇2

𝑧22𝜓(𝑋)⊤𝜓(𝑋)(𝜃 − 𝜃)+

𝑧2(𝑊 ⊤𝜓(𝑋) + 𝜖).

(25)

Another Lyapunov function is designed as 

𝑉3 =
1
2𝛾
𝜃2. (26)

Applying Eq. (24), the differentiation of 𝑉3 is 

𝑉̇3 = − 1
𝛾
𝜃 ̇̂𝜃 = −𝜃

( 1
2𝜇2

𝑧22𝜓(𝑋)⊤𝜓(𝑋) − 2𝜎1𝜃̂ − 𝜎2𝜃̂2𝛽+1
)

= − 1 𝑧22𝜓(𝑋)⊤𝜓(𝑋)𝜃 + 2𝜎1𝜃𝜃̂ + 𝜎2𝜃𝜃̂2𝛽+1.
(27)
2𝜇2
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Then, add Eqs.  (25) and (27), one can obtain 
𝑉̇1 + 𝑉̇2 + 𝑉̇3 = − 𝑘1|𝑧1|

𝛼+1 − 𝑘2|𝑧1|
2(𝛽+1) − 𝑘3|𝑧2|

𝛼+1−

𝑘4|𝑧2|
2(𝛽+1) − 1

2
𝑧22 −

1
2𝜇2

𝑧22𝜓(𝑋)⊤𝜓(𝑋)

(𝜃 − 𝜃) + 𝑧2(𝑊 ⊤𝜓(𝑋) + 𝜖)−
1

2𝜇2
𝑧22𝜓(𝑋)⊤𝜓(𝑋)𝜃 + 2𝜎1𝜃𝜃̂ + 𝜎2𝜃𝜃̂2𝛽+1

= −𝑘1|𝑧1|
𝛼+1 − 𝑘2|𝑧1|

2(𝛽+1) − 𝑘3|𝑧2|
𝛼+1−

𝑘4|𝑧2|
2(𝛽+1) − 1

2
𝑧22 −

1
2𝜇2

𝑧22𝜓(𝑋)⊤𝜓(𝑋)𝜃+

𝑧2𝑊
⊤𝜓(𝑋)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Term 1

+ 𝑧2𝜖
⏟⏟⏟
Term 2

+ 2𝜎1𝜃𝜃̂
⏟⏟⏟
Term 3

+ 𝜎2𝜃𝜃̂2𝛽+1
⏟⏞⏟⏞⏟
Term 4

.

(28)

(1) Term 1: The following inequality is obtained according to 
Lemmas  2 and 3

𝑧2𝑊
⊤𝜓(𝑋) ≤ 1

2𝜇2
(𝑧2𝑊 ⊤𝜓(𝑋))⊤𝑧2𝑊 ⊤𝜓(𝑋) +

𝜇2

2

= 1
2𝜇2

𝑧22(𝑊
⊤𝜓(𝑋))2 +

𝜇2

2

≤ 1
2𝜇2

𝑧22
(

𝑊 ⊤𝑊
⏟⏟⏟

𝜃

⋅𝜓(𝑋)⊤𝜓(𝑋)
)

+
𝜇2

2

= 1
2𝜇2

𝑧22𝜃𝜓(𝑋)⊤𝜓(𝑋) +
𝜇2

2
.

(29)

(2) Term 2: Use the Lemma  2, the following inequality is obtained 

𝑧2𝜖 ≤
1
2
𝑧22 +

1
2
𝜖2. (30)

(3) Term 3: Firstly, according to Eq. (24) and Lemma  2, one can 
obtain 
2𝜃𝜃̂ = 2𝜃(𝜃 − 𝜃) = −2𝜃2 + 2𝜃𝜃 ≤ −2𝜃2 + 𝜃2 + 𝜃2 = −𝜃2 + 𝜃2. (31)

Make that 
𝑧 = 𝜃2, 𝜁 = 1, 𝜇 = 𝑝, 𝜂 = 1 − 𝑝, 𝜄 = 1

𝑝
, 0 < 𝑝 = 𝛼 + 1

2
< 1. (32)

Then, according to Lemma  4, the following inequality holds 

(𝜃2)
𝛼+1
2 ≤ 𝜃2 + (1 − 𝑝)𝑝

𝑝
1−𝑝 = 𝜃2 + 1 − 𝛼

2

( 1 + 𝛼
2

)

1+𝛼
1−𝛼

− 𝜃2 ≤ −|𝜃|𝛼+1 + 1 − 𝛼
2

( 1 + 𝛼
2

)

1+𝛼
1−𝛼 .

(33)

Finally, combine the inequalities in Eqs.  (31) and (33), the following 
inequality holds 

2𝜎1𝜃𝜃̂ ≤ −𝜎1|𝜃|
𝛼+1 +

𝜎1(1 − 𝛼)
2

( 1 + 𝛼
2

)

1+𝛼
1−𝛼 + 𝜎1𝜃2. (34)

(4) Term 4: According to Eqs.  (22) and (24), 𝜃̂ ≥ 0, 𝜃 ≥ 0 and 𝜃 ≤ 𝜃. 
Hence, it can be obtained with Lemmas  5 and 6

𝜃𝜃̂2𝛽+1 = (𝜃 − 𝜃̂)𝜃̂2𝛽+1 ≤ 1
2(1 + 𝛽)

(𝜃2(𝛽+1) − 𝜃̂2(𝛽+1))

= 1
2(1 + 𝛽)

(𝜃2(𝛽+1) − (𝜃 − 𝜃)2(𝛽+1))

≤ 1
2(1 + 𝛽)

(

𝜃2(𝛽+1) − (𝜃2(𝛽+1) − 𝜃2(𝛽+1))
)

= − 1
2(1 + 𝛽)

|𝜃|2(𝛽+1) + 1
1 + 𝛽

𝜃2(𝛽+1).

(35)

Therefore, 

𝜎2𝜃𝜃̂
2𝛽+1 ≤ −

𝜎2
2(1 + 𝛽)

|𝜃|2(𝛽+1) +
𝜎2

1 + 𝛽
𝜃2(𝛽+1). (36)
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Finally, combine the Eq. (28) and the inequalities in (29), (30), (34) 
and (36), the following inequality holds 
𝑉̇1 + 𝑉̇2 + 𝑉̇3 ≤ −𝑘1|𝑧1|

𝛼+1 − 𝑘2|𝑧1|
2(𝛽+1)

− 𝑘3|𝑧2|
𝛼+1 − 𝑘4|𝑧2|

2(𝛽+1) +
𝜇2

2
+ 1

2
𝜖2−

𝜎1|𝜃|
𝛼+1 +

𝜎1(1 − 𝛼)
2

( 1 + 𝛼
2

)

1+𝛼
1−𝛼 + 𝜎1𝜃2

−
𝜎2

2(1 + 𝛽)
|𝜃|2(𝛽+1) +

𝜎2
1 + 𝛽

𝜃2(𝛽+1).

(37)

Write the positive numbers in the Eq. (37) as 𝐶, one can obtain 
𝑉̇1 + 𝑉̇2 + 𝑉̇3 ≤ −𝑘1|𝑧1|

𝛼+1 − 𝑘2|𝑧1|
2(𝛽+1) − 𝑘3|𝑧2|

𝛼+1−

𝑘4|𝑧2|
2(𝛽+1) − 𝜎1|𝜃|

𝛼+1 −
𝜎2

2(1 + 𝛽)
|𝜃|2(𝛽+1)+

𝜇2

2
+ 1

2
𝜖2 +

𝜎1(1 − 𝛼)
2

( 1 + 𝛼
2

)

1+𝛼
1−𝛼 +

𝜎1𝜃
2 +

𝜎2
1 + 𝛽

𝜃2(𝛽+1)

= −𝑘1|𝑧1|
𝛼+1 − 𝑘2|𝑧1|

2(𝛽+1) − 𝑘3|𝑧2|
𝛼+1−

𝑘4|𝑧2|
2(𝛽+1) − 𝜎1|𝜃|

𝛼+1 −
𝜎2

2(1 + 𝛽)
|𝜃|2(𝛽+1)

+ 𝐶.

(38)

Then, with 𝑉 = 𝑉1 + 𝑉2 + 𝑉3, it holds 

𝑉̇ ≤ − 2
𝛼+1
2 𝑘1

( 1
2
𝑧21

)

𝛼+1
2 − 2

𝛼+1
2 𝑘3

( 1
2
𝑧22

)

𝛼+1
2 −

(2𝛾)
𝛼+1
2 𝜎1

( 1
2𝛾
𝜃2

)

𝛼+1
2 − 2𝛽+1𝑘2

( 1
2
𝑧21

)𝛽+1
−

2𝛽+1𝑘4
( 1

2
𝑧22

)𝛽+1
−

(2𝛾)𝛽+1𝜎2
2(1 + 𝛽)

( 1
2𝛾
𝜃2

)𝛽+1
+ 𝐶.

(39)

Define the following variables as 

𝜌1 =min
{

2
𝛼+1
2 𝑘1, 2

𝛼+1
2 𝑘3, (2𝛾)

𝛼+1
2 𝜎1

}

,

𝜌2 =min
{

2𝛽+1𝑘2, 2𝛽+1𝑘4,
(2𝛾)𝛽+1𝜎2
2(1 + 𝛽)

}

.
(40)

According to Lemma  7, it holds 

𝜌1(𝑉1 + 𝑉2 + 𝑉3)
𝛼+1
2 ≤ 𝜌1𝑉

𝛼+1
2

1 + 𝜌1𝑉
𝛼+1
2

2 + 𝜌1𝑉
𝛼+1
2

3

≤ 2
𝛼+1
2 𝑘1

( 1
2
𝑧21

)

𝛼+1
2 + 2

𝛼+1
2 𝑘3

( 1
2
𝑧22

)

𝛼+1
2 +

(2𝛾)
𝛼+1
2 𝜎1

( 1
2𝛾
𝜃2

)

𝛼+1
2

→ −𝜌1𝑉
𝛼+1
2 ≥ −2

𝛼+1
2 𝑘1

( 1
2
𝑧21

)

𝛼+1
2 −

2
𝛼+1
2 𝑘3

( 1
2
𝑧22

)

𝛼+1
2 − (2𝛾)

𝛼+1
2 𝜎1

( 1
2𝛾
𝜃2

)

𝛼+1
2 .

(41)

If 𝑛 = 3, according to Lemma  8, it holds 
𝜌23−𝛽 (𝑉1 + 𝑉2 + 𝑉3)𝛽+1 ≤ 𝜌2𝑉

𝛽+1
1 + 𝜌2𝑉

𝛽+1
2 + 𝜌2𝑉

𝛽+1
3

≤ 2𝛽+1𝑘2
( 1

2
𝑧21

)𝛽+1
+ 2𝛽+1𝑘4

( 1
2
𝑧24

)𝛽+1
+

(2𝛾)𝛽+1𝜎2
2(1 + 𝛽)

( 1
2𝛾
𝜃2

)𝛽+1

→ −𝜌23−𝛽𝑉 𝛽+1 ≥ −2𝛽+1𝑘2
( 1

2
𝑧21

)𝛽+1
−

2𝛽+1𝑘4
( 1

2
𝑧24

)𝛽+1
−

(2𝛾)𝛽+1𝜎2
2(1 + 𝛽)

( 1
2𝛾
𝜃2

)𝛽+1
.

(42)

Finally, combine the inequalities in (39), (41) and (42), one can 
obtain 

𝑉̇ ≤ −𝜌1𝑉
𝛼+1
2 − 𝜌23−𝛽𝑉 𝛽+1 + 𝐶, 0 < 𝛼 < 1, 𝛽 ∈ N+. (43)

Thus, Theorem  1 is proved and the practical fixed-time stability is 
achieved.
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Fig. 1. The control block diagram of the proposed ANNFTC.
According to the aforementioned controller design, the overall con-
trol law of ANNFTC is: 
𝑢 =1

𝑏

(

𝜈̇ + 𝑎2𝑥2 + 𝑎1𝑥1 − 𝑧1 − 1∕2𝑧2 − 𝑘3|𝑧2|
𝛼sign(𝑧2)

− 𝑘4|𝑧2|
2𝛽+1sign(𝑧2) + 𝜑𝑎

)

,

𝜈 = − 𝑘1|𝑧1|
𝛼sign(𝑧1) − 𝑘2|𝑧1|2𝛽+1sign(𝑧1) + 𝑥̇𝑑 ,

0 < 𝛼 < 1, 𝛽 ∈ N+,

𝜑𝑎 = − 1
2𝜇2

𝑧2𝜓(𝑋)⊤𝜓(𝑋)𝜃̂,

̇̂𝜃 =𝛾
( 1

2𝜇2
𝑧22𝜓(𝑋)⊤𝜓(𝑋) − 2𝜎1𝜃̂ − 𝜎2𝜃̂2𝛽+1

)

.

(44)

From Eq. (44), it can be found that the derivatives of the intermedi-
ate variables and state variables are introduced. However, in practical 
applications, the differentiation process amplifies measurement noise 
and exists singularity issue in the differentiation of sign function shown 
in Eq. (44), potentially compromising system stability. Hence, in prac-
tical use, by applying a stable filter (1 / (𝜆 𝑠+1)) to the variables 𝜈, 𝑥1, 
and 𝑥𝑑 , filtered variables are introduced as: 
𝜈𝑓 = 𝜈

𝜆𝑠 + 1
⇔ 𝜆𝜈̇𝑓 + 𝜈𝑓 = 𝜈 →

𝜈̇𝑓 =
𝜈 − 𝜈𝑓
𝜆

, 𝜈𝑓 (0) = 0,
(45)

𝑥1𝑓 =
𝑥1

𝜆𝑠 + 1
⇔ 𝜆𝑥̇1𝑓 + 𝑥1𝑓 = 𝑥1 →

𝑥̇1𝑓 =
𝑥1 − 𝑥1𝑓

𝜆
, 𝑥1𝑓 (0) = 0,

(46)

𝑥𝑑𝑓 =
𝑥𝑑

𝜆𝑠 + 1
⇔ 𝜆𝑥̇𝑑𝑓 + 𝑥𝑑𝑓 = 𝑥𝑑 →

𝑥̇𝑑𝑓 =
𝑥𝑑 − 𝑥𝑑𝑓

𝜆
, 𝑥𝑑𝑓 (0) = 0,

(47)

where 𝜆 > 0 is a filter parameter which is designed to guarantee that 
the cutoff frequency is much higher than the frequency of the tracking 
signal so that the filter error is neglected. Furthermore, 𝑥2𝑓 = 𝑥̇1𝑓 , 
𝑧 = 𝑥 − 𝑥 , 𝑧 = 𝑥 − 𝜈 .
1𝑓 1𝑓 𝑑𝑓 2𝑓 2𝑓 𝑓
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Replace the filtered variables in Eq. (44) with Eqs. (45)–(47), the 
final control force applied to the PEA system is as follows: 

𝑢 =1
𝑏

(

𝜈̇𝑓 + 𝑎2𝑥2𝑓 + 𝑎1𝑥1𝑓 − 𝑧1𝑓 − 1∕2𝑧2𝑓−

𝑘3|𝑧2𝑓 |
𝛼sign(𝑧2𝑓 ) − 𝑘4|𝑧2𝑓 |2𝛽+1sign(𝑧2𝑓 ) + 𝜑𝑎

)

,

𝜈𝑓 = − 𝑘1|𝑧1𝑓 |
𝛼sign(𝑧1𝑓 ) − 𝑘2|𝑧1𝑓 |2𝛽+1sign(𝑧1𝑓 ) + 𝑥̇𝑑𝑓 ,

0 < 𝛼 < 1, 𝛽 ∈ N+,

𝜑𝑎 = − 1
2𝜇2

𝑧2𝑓𝜓(𝑋)⊤𝜓(𝑋)𝜃̂, 𝑋𝑓 = [𝑥1𝑓 , 𝑥2𝑓 ],

̇̂𝜃 =𝛾
( 1

2𝜇2
𝑧22𝑓𝜓(𝑋)⊤𝜓(𝑋) − 2𝜎1𝜃̂ − 𝜎2𝜃̂2𝛽+1

)

.

(48)

The overall control scheme is shown in Fig.  1.

4. Preliminary simulation of error dynamics

A simple system shown in Eq. (49) is used to test the convergence 
of error with different controllers, including: the PID, FTC, Finite-time 
control and the proposed ANNFTC 

𝑥̇ = 𝑢 + 𝑑, 𝑒 = 𝑥 − 𝑥𝑑 , (49)

where 𝑥 is the state variable, 𝑢 is the input and 𝑑 is the disturbance. 𝑥𝑑
is the desired state and 𝑒 is the tracking error. Then, the derivative of 
the error can be obtained: 
𝑒̇ = 𝑢 + 𝑑. (50)

To control the system in Eq. (49), the control laws of the controllers 
are listed as:

(1) PID 

𝑢 = −𝑘𝑝𝑒 − 𝑘𝑖 ∫ 𝑒𝑑𝑡 − 𝑘𝑑 𝑒̇,

𝑒̇ = −𝑘𝑝𝑒 − 𝑘𝑖 ∫ 𝑒𝑑𝑡 − 𝑘𝑑 𝑒̇ + 𝑑.
(51)
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(2) FTC: 
𝑢 = −𝑘1|𝑒|

𝛼sign(𝑒) − 𝑘2|𝑒|2𝛽+1sign(𝑒). (52)

(3) Finite-time control: 
𝑢 = −𝑘1|𝑒|

𝛼sign(𝑒) − 𝑘2𝑒. (53)

(4) ANNFTC: 
𝑢 = − 𝑒

2
− 𝑘1|𝑒|

𝛼sign(𝑒) − 𝑘2|𝑒|2𝛽+1sign(𝑒) + 𝜑𝑎,

𝜑𝑎 = − 1
2𝜇2

𝑒𝜓(𝑋)⊤𝜓(𝑋)𝜃̂,

̇̂𝜃 =𝛾
( 1

2𝜇2
𝑒2𝜓(𝑋)⊤𝜓(𝑋) − 2𝜎1𝜃̂ − 𝜎2𝜃̂2𝛽+1

)

.

(54)

This section aims to validate the accuracy and effectiveness of 
the proposed ANNFTC by testing two scenarios: the absence of dis-
turbances and the presence of disturbances. Firstly, the parameters 
without disturbances are set as follows: 
(1) PID: 𝑘𝑝 = 10; 𝑘𝑑 = 1; 𝑘𝑖 = 0,

(2) FTC: 𝑘1 = 1; 𝑘2 = 1; 𝛼 = 0.1; 𝛽 = 1,

(3) Finite-time control: 𝑘1 = 5; 𝑘2 = 1; 𝛼 = 0.1,

(4) ANNFTC: 𝑘1 = 1; 𝑘2 = 1; 𝛼 = 0.1; 𝛽 = 1;

𝜇 = 1; 𝛾 = 10; 𝜎1 = 1; 𝜎2 = 1,

(55)

According to the parameters in Eq. (55) and the maximum setting time 
calculation which is shown in Eq. (3), the maximum setting time 𝑇max =
2.0198. The detailed error convergence and dynamics in this case are 
shown in Fig.  2. It is evident that, compared to the PID and Finite-time 
control, both FTC and ANNFTC achieve fixed-time error convergence, 
with the settling time controllable within the maximum convergence 
time 𝑇𝑚𝑎𝑥, calculated using Eq. (3). In this case, different initial error 
states are also considered to evaluate the initial-independence priority 
of the fixed-time convergence for both the FTC and ANNFTC. As shown 
clearly in Fig.  2, with three different initial error values (10-20-40), 
both FTC and ANNFTC can achieve fixed-time error convergence within 
the maximum convergence time 𝑇𝑚𝑎𝑥. In contrast, the settling time of 
Finite-time control increases with the rise of initial error values. This 
further verifies the rationality and superiority of the FTC and ANNFTC 
designed in this paper. Meanwhile, with the assistance of the neural 
network, ANNFTC demonstrates a faster convergence speed than FTC, 
even in the absence of disturbances.

Next, consider the case with disturbances. The parameters in this 
case are set with disturbance 𝑑 = 1 ⋅ 𝑐𝑜𝑠(2𝜋 ⋅ 1 ⋅ 𝑡): 

(1)PID: 𝑘𝑝 =10; 𝑘𝑑 = 1; 𝑘𝑖 = 0,

(2) FTC: 𝑘1 =1; 𝑘2 = 1; 𝛼 = 0.1; 𝛽 = 1

(3)ANNFTC-1: 𝑘1 =1; 𝑘2 = 1; 𝛼 = 0.1; 𝛽 = 1;

𝜇 = 1; 𝛾 = 10; 𝜎1 = 𝜎2 = 1,

(4)ANNFTC-2: 𝑘1 =1; 𝑘2 = 1; 𝛼 = 0.1; 𝛽 = 1;

𝜇 = 1; 𝛾 = 10; 𝜎1 = 𝜎2 = 10−6.

(56)

The detailed error convergence and dynamics in this case are shown 
in Fig.  3. It can be found that with the help of neural network compen-
sation, the ANNFTC shows better convergence speed and smaller error 
than FTC and PID under the disturbance. Meanwhile, smaller value 
of 𝜎1 and 𝜎2 will help accelerate the convergence speed and tracking 
accuracy, which can serve as the parameter tuning method of ANNFTC.

5. Experimental evaluation

5.1. Experimental platform

The experimental evaluation was conducted on a custom-built plat-
form incorporating a piezoelectric stack actuator (PEA) (Fig.  4(a-b)) 
to validate the effectiveness of the proposed ANNFTC. A piezoelectric 
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Fig. 2. Error convergence of the four controllers with different initial states 
and without disturbances.

Fig. 3. Error convergence with different parameters for disturbance compen-
sation.

stack (NAC2015, Harbin Chip Technology Co., Ltd) with a 12 μ m 
stroke and a maximum driving voltage of 100 V was used for actuation. 
The control system is based on an xPC Target real-time platform, 
consisting of a host PC, a target PC, a PCI-6259 motion acquisition 
card, and an interface board. Control signals (0–10 V) are generated in 
real time via the 16-bit digital-to-analog converter of the data output 
module in the xPC Target environment. A custom-built power amplifier 
with a fixed gain of 30 amplifies the control signal to provide the 
driving voltage for the PEA. Displacement of the PEA is measured using 
a capacitive displacement sensor (E09.Cap, Harbin Core Tomorrow 
Science & Technology Co., Ltd).

5.2. System identification

A high-amplitude (100 V) step response test is conducted to identify 
the nominal model 𝐺(𝑠) in Eq. (12). A second-order LTI model is 
obtained using the System Identification Toolbox in MATLAB as, 

𝐺(𝑠) = 2.63 × 106 . (57)

𝑠2 + 5300𝑠 + 2.534 × 107
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Fig. 4. Experimental setup and system identification results. (a) Block diagram of signal flow. (b) Experimental system. (c) Identification results with a step 
response and the evaluation of sensor noise. (d) Tested hysteresis nonlinearity of the PEA.
The identified result is shown in Fig.  4(c). It can be found that 
the steady state of the identified model fits well with the measured 
experimental data, but the transient part does not fit well. Hence, the 
unmodeled dynamics caused by the identification process exist and 
need to be treated as the unknown disturbance as Eq. (12) shows. 
Therefore, the nominal parameters are 𝑚 = 1, 𝑘 = 2.534×107, 𝑏 = 5300. 
These parameters are used in the ANNFTC as Eqs.  (13) and (48) show. 
Meanwhile, the sensor noise in experiments can also be found in Fig. 
4(c). The amplitude of the random noise is generally within ±0.05 
μ m. Subsequent closed-loop experiments will verify the controller’s 
robustness against noise of this magnitude.

Furthermore, the hysteresis nonlinearity of the PEA is demonstrated 
in Fig.  4(d), which depicts the response under a 1 Hz harmonic driving 
signal with ascending voltage amplitudes (0, 25, 50, 75, and 100 V). 
It can be observed that the PEA exhibits significant hysteresis loops, 
and the actual displacement under harmonic excitation deviates from 
the output predicted by the identified model to be used in controllers. 
Therefore, the model uncertainty caused by hysteresis nonlinearity 
must be regarded as an unknown disturbance, as formulated in Eq. (12). 
This observation underscores the motivation for the control strategy 
proposed in this study.

5.3. Controller set

The priority of the fixed-time convergence under different initial 
values of ANNFTC has been sufficiently evaluated and compared with 
PID, FTC and Finite-time control by simulations in Section 4. Here, to 
evaluate the tracking performance of the proposed ANNFTC for preci-
sion motion control of PEAs in the presence of hysteresis nonlinearity, 
unmodeled dynamics, and external transient disturbance, ANNFTC is 
tested by closed-loop experiments in comparison with the FTC and the 
adaptive FTC (AFTC) in [27]. The controller set for each controller is 
listed as follows.
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5.3.1. FTC
The FTC here is designed with the backstepping method and a stable 

filter (1 / (𝜆 𝑠+1)) is applied to the variables 𝜈, 𝑥1, and 𝑥𝑑 . The overall 
control law of FTC is applied as follows 

𝑢 =1
𝑏

(

𝜈̇𝑓 + 𝑎2𝑥2𝑓 + 𝑎1𝑥1𝑓 − 𝑧1𝑓 − 𝑧2𝑓∕2 + 𝑢1𝑓
)

,

𝜈𝑓 = −𝑘1|𝑧1𝑓 |
𝛼sign(𝑧1𝑓 ) − 𝑘2|𝑧1𝑓 |2𝛽+1sign(𝑧1𝑓 ) + 𝑥̇𝑑𝑓 ,

𝑢1𝑓 = −𝑘3|𝑧2𝑓 |
𝛼sign(𝑧2𝑓 ) − 𝑘4|𝑧2𝑓 |2𝛽+1sign(𝑧2𝑓 ).

(58)

The filtered variables calculation is done as Eqs. (45)–(47) show.

5.3.2. ANNFTC
The radial basis function network (RBFNN) is adopted to approx-

imate the unknown nonlinearity and dynamics in ANNFTC. From 
Eq. (24), 𝜓(𝑥) is the Gaussian function with 𝜓(𝑥) =

[

𝜓1(𝑥), 𝜓2(𝑥),… ,
𝜓𝑀 (𝑥)

]𝑇 ∈ R𝑀 , and for a 𝑀-nodes neural network, the radial basis 
function of the 𝑘th neural network layer is 

𝜓(𝑥)𝑘 = exp

(

− ‖

‖

𝑥 − 𝑐𝑘‖‖
2

2𝐿

)

, 𝑘 = 1, 2,… ,𝑀. (59)

where 𝑐𝑘 =
[

𝑐𝑘,1, 𝑐𝑘,2,… , 𝑐𝑘,𝑁
]𝑇 ∈ R𝑁  is the 𝑘th neural network layer’s 

center vector, 𝐿 is the width of the Gaussian function, 𝑀,𝑁 ∈ R+. In 
this paper, the input vector of the RBFNN is 𝑥 = [𝑥1𝑓 , 𝑥2𝑓 ]𝑇  so that 
𝑁 = 2. The overall control law is as Eq. (48) shows.

5.3.3. AFTC in [27]
The AFTC is designed with FTC and neural network (NN) compen-

sation. The difference between the AFTC and the proposed ANNFTC 
is mainly the adaptive law of the weights of NN. Compared to the 
adaptive law of AFTC which is designed with asymptotically stable 
property, the law of ANNFTC can guarantee the fixed-time convergence 
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of the estimated error of weights. The overall control law of the AFTC 
is 
𝑢 =1

𝑏

(

𝜈̇𝑓 + 𝑎2𝑥2𝑓 + 𝑎1𝑥1𝑓 − 𝑧1𝑓 + 𝑢1𝑓 + 𝜑𝑎
)

,

𝜈𝑓 = −𝑘1|𝑧1𝑓 |
2𝑝−1sign(𝑧1𝑓 ) − 𝑘2|𝑧1𝑓 |2𝑞−1sign(𝑧1𝑓 ) + 𝑥̇𝑑𝑓 ,

𝑢1𝑓 = −𝑘3|𝑧2𝑓 |
2𝑝−1sign(𝑧2𝑓 ) − 𝑘4|𝑧2𝑓 |2𝑞−1sign(𝑧2𝑓 ).

𝜑𝑎 = − 1
2𝜇2

𝑧2𝑓𝜓(𝑋)⊤𝜓(𝑋)𝜃̂, 𝑋𝑓 = [𝑥1𝑓 , 𝑥2𝑓 ],

̇̂𝜃 =𝛾
( 1

2𝜇2
𝑧22𝑓𝜓(𝑋)⊤𝜓(𝑋) − 𝜎1𝜃̂

)

.

(60)

The NN used in AFTC is also the RBFNN which is the same as the one 
introduced in Section 5.3.2.

5.4. Parameter tuning

The determination and tuning of the parameters of ANNFTC can be 
summarized as the following detailed steps:

(1) Tuning the control gain 𝑘𝑖(𝑖 = 1,… , 4) and the exponential 
Values of 𝛼 and 𝛽 of the FTC part. The selection of the gain parameter 
𝑘𝑖 is critical for system performance, as overly small values impede 
convergence rate while excessively large values induce oscillatory be-
havior. Since 𝑧1 represents the displacement tracking error and 𝑧2
represents the velocity tracking error, the corresponding gains 𝑘1 and 
𝑘3 for 𝑧1 can be tuned to higher values to ensure fast convergence of 
the tracking error. Conversely, the gains 𝑘2 and 𝑘4 corresponding to 
𝑧2 must be constrained to lower magnitudes than 𝑘1 and 𝑘3 to prevent 
system instability and oscillations driven by amplified velocity error 
dynamics. Based on extensive simulation and experimental analysis, the 
following parameter values are determined: 𝑘1 is set to 1000, while 𝑘4
is selected as 0.1, falling within the stable range of (0,0.2] where larger 
values would trigger undesired oscillatory responses. In comparison, 𝑘2
and 𝑘3 offer greater tuning flexibility within experimental validation, 
yet remain bounded to avoid interference with the stabilizing effects 
of 𝑘1 and 𝑘4. Accordingly, 𝑘2 and 𝑘3 are assigned values of 200 
and 50, respectively, ensuring balanced dynamic performance without 
compromising system stability. Based on Eq. (48), 𝛼 should be selected 
in the range of (0,1). Hence, 𝛼 is taken here as 0.5, which is the 
intermediate value. 𝛽 can be selected as a positive value. Here, 𝛽 is 
selected as 1, which is close to the value of 𝛼 to balance the effect of 
the two parameters.

(2) Tuning the parameters of NN: 𝜇, 𝛾, 𝜎1 and 𝜎2. Based on Eq.  (2), 
(4), (37) and (40), small values of 𝜇, 𝜎1 and 𝜎2 and large value of 𝛾
guarantee the estimation accuracy of NN. However, too large 𝛾 with 
too small 𝜇, 𝜎1 and 𝜎2 will cause the oscillations. From the simulation 
test, 𝜇 falls within the stable range of [0.45,0.8] and 𝛾 should be 
tuned within [10,150] to avoid oscillations. Here, for pursuing high 
estimation accuracy of NN, 𝜇 is set as 0.5 and 𝛾 is set as 100. 𝜎1 and 
𝜎2 should be tuned in accordance with the value of the real model 
uncertainty. Other parameters like 𝑀 , 𝑁 , and 𝐿 of the RBFNN are 
not key to choosing since the weights of RBFNN are tuned online in 
the control process. The values are selected by experience based on the 
Refs. [25,26].

(3) After determining the parameters of FTC and NN parts, the rest 
parameter is the filter parameter 𝜆. The bandwidth of the stable filter 
(1 / (𝜆 𝑠+1)) is set higher than the maximum tracking frequency to 
account for the influence of sensor noise and the singularity problem of 
the calculation of the state variables. From simulation and experimental 
tests, the cutoff frequency of the filter must be set to at least three 
times the tracking frequency to avoid affecting tracking accuracy. In the 
experimental setup, the filter cutoff frequency is set to 50 Hz (higher 
than three times the frequency of the experimental tracking signals 
described later) for ANNFTC. The lower cutoff frequency in ANNFTC 
is necessitated by the structure of the controller: the raw control 
signal prior to filtering contains high-frequency components originating 
from the neural network output. This noise makes the signal more 
253 
susceptible to oscillation, thereby requiring more aggressive filtering 
to ensure stable operation.

Based on the parameters of ANNFTC, in both FTC and AFTC, the 
same parameters as those in ANNFTC are preliminarily initialized to 
be consistent with ANNFTC. Subsequently, considering that the actual 
experimental platform suffers from the inevitable uncertainties, some 
parameters of FTC are tuned carefully by an iterative trial and error 
method to avoid oscillations. Further, since the adaptive law of AFTC 
differs from ANNFTC, the value of 𝜎1 and 𝛾 are tuned by experiments 
for the excellent tracking performance of AFTC, while other parameters 
are kept the same of ANNFTC. This ensures that the comparison of 
outcomes achieved are suitably fair, as each specified controller has 
essentially been appropriately and properly tuned. All the parameters 
used in the experiments are listed below.

Parameters of FTC: 
{

𝛼 = 0.5, 𝛽 = 1, 𝜆 = 0.003183

𝑘1 = 1000, 𝑘2 = 10, 𝑘3 = 10, 𝑘4 = 0.1
(61)

Parameters of ANNFTC: 
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝛼 = 0.5, 𝛽 = 1, 𝜆 = 0.003183

𝑘1 = 1000, 𝑘2 = 200, 𝑘3 = 50, 𝑘4 = 0.1

𝑀 = 10, 𝑁 = 2, 𝐿 = 0.45, 𝜇 = 0.5, 𝜎1 = 1 × 10−9,

𝜎2 = 1 × 10−9, 𝛾 = 100

𝑐 =

⎡

⎢

⎢

⎢

⎢

⎣

−10 −1 −0.5 −0.1 −0.05
10 1 0.5 0.1 0.05;

−200 −100 −50 −1 −0.5
100 10 50 10 50

⎤

⎥

⎥

⎥

⎥

⎦

× 0.05

(62)

Parameters of AFTC: 
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑝 = 0.75, 𝑞 = 1, 𝜆 = 0.003183

𝑘1 = 1000, 𝑘2 = 200, 𝑘3 = 50, 𝑘4 = 0.1

𝑀 = 10, 𝑁 = 2, 𝐿 = 0.45, 𝜇 = 0.5, 𝜎1 = 10, 𝛾 = 10

𝑐 =

⎡

⎢

⎢

⎢

⎢

⎣

−10 −1 −0.5 −0.1 −0.05
10 1 0.5 0.1 0.05;

−200 −100 −50 −1 −0.5
100 10 50 10 50

⎤

⎥

⎥

⎥

⎥

⎦

× 0.05

(63)

5.5. Tracking results of ANNFTC

As mentioned above, the design purpose of the ANNFTC is to realize 
the rapid convergence of tracking error for precision motion tracking 
under the model uncertainty and external disturbance. To validate 
the effectiveness of the proposed controller, sinusoidal and triangular 
trajectories ranging from 1 to 10 Hz and 1 to 9 μ m are used for the 
references. External disturbances are also added in the experiments. To 
quantify the tracking errors of different controllers, some error indices 
are defined as: 

𝑒𝑟𝑚𝑠 =

√

∑𝑛
𝑖=1

(

𝑥(𝑖)−𝑥𝑑 (𝑖)
)2

𝑛 ,
𝑒𝑛𝑟𝑚𝑠 =

𝑒𝑟𝑚𝑠
𝐴 × 100%,

𝑒𝑚𝑎𝑥 = 𝑚𝑎𝑥
(

|

|

𝑥(𝑖) − 𝑥𝑑 (𝑖)||
)

,

(64)

where 𝑒𝑟𝑚𝑠, 𝑒𝑛𝑟𝑚𝑠 and 𝑒𝑚𝑎𝑥 are the root-mean-square error (RMSE), 
nominal root-mean-square error (NRMSE) and the maximum tracking 
error, respectively. 𝑥 and 𝑥𝑑 are the output displacement of PEA and 
the reference trajectory, 𝑖 is the sampling number, 𝐴 is the reference 
stroke, 𝑛 is the total number of the data.

5.5.1. Case 1: Results of sinusoidal waves tracking
To test the performance of the proposed ANNFTC in precision 

motion tracking, sinusoidal waves with different amplitudes and fre-
quencies are set as the reference in this section. The first sinusoidal 
reference 𝑟  is: 𝑟 (𝑡) = 2.5 sin(2𝜋𝑡 − 0.5𝜋) + 3.5, the second one 𝑟  is: 
1 1 2
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Fig. 5. Results of ANNFTC under Case 1 and Case 2. (a) Tracking results of Case 1: 𝑟1 and 𝑟3. (b) Tracking results of Case 1: 𝑟2 and 𝑟4. (c) Tracking results of 
Case 2: 𝑟1 and 𝑟3. (d) Tracking results of Case 2: 𝑟2 and 𝑟4.
Table 1
Statistical control results under different tracking references.
 Reference Statistical Sinusoidal tracking Triangular tracking
 trajectories data FTC ANNFTC (Compared to FTC) AFTC in [27] FTC ANNFTC (Compared to FTC) AFTC in [27] 
 𝑟1 𝑒rms (μm) 0.570 0.067 (↓ 88.3%) 0.097 0.568 0.071(↓ 87.5%) 0.100  
 𝑒max (μm) 0.932 0.435 0.477 0.983 0.428 0.458  
 𝑟2 𝑒rms (μm) 0.517 0.081 (↓ 84.3%) 0.133 0.515 0.093(↓ 81.9%) 0.134  
 𝑒max (μm) 0.885 0.432 0.458 1.292 1.085 0.501  
 𝑟3 𝑒rms (μm) 0.629 0.076 (↓ 87.9%) 0.114 0.635 0.082(↓ 87.1%) 0.119  
 𝑒max (μm) 1.075 0.353 0.448 1.011 0.394 0.435  
 𝑟4 𝑒rms (μm) 0.491 0.105 (↓ 78.6%) 0.163 0.515 0.121(↓ 76.5%) 0.165  
 𝑒max (μm) 1.067 0.453 0.560 1.067 0.445 0.486  
𝑟2(𝑡) = 2.5 sin(20𝜋𝑡 − 0.5𝜋) + 3.5, the third one 𝑟3 is: 𝑟3(𝑡) = 4 sin(2𝜋𝑡 −
0.5𝜋) + 5, the fourth one 𝑟4 is: 𝑟4(𝑡) = 4 sin(20𝜋𝑡 − 0.5𝜋) + 5. Overall 
tracking view and errors of FTC, AFTC and ANNFTC are shown in 
Fig.  5. It can be found that the proposed ANNFTC can realize the 
precision tracking of sinusoidal waves within 10 Hz. The RMSE (resp. 
NRMSE) is below 0.105 μ m (resp. 1.17%). Due to hysteresis and 
model uncertainty, as Fig.  4(c-d) shows, without NN compensation, the 
tracking errors of FTC are significantly larger compared to the ones 
of ANNFTC. This demonstrates the robustness of ANNFTC to model 
uncertainties, while also highlighting the limitations of FTC and the 
necessity of ANNFTC. Meanwhile, compared with AFTC, the priority of 
ANNFTC in tracking performance is not obvious. This is because the 
AFTC is also integrated with NN compensation. However, compared to 
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AFTC, the superiority of the ANNFTC designed in this paper lies in the 
fact that the estimation weight errors of the NN also achieve fixed-time 
convergence. Therefore, ANNFTC exhibits faster convergence speed and 
greater robustness to transient disturbances compared to AFTC. Hence, 
the priority of ANNFTC over AFTC will be obvious when the initial 
value changes and external transient disturbance exists. This case is 
shown in the following Section 5.5.3.

More detailed data on tracking errors of Case 1 is listed in Table 
1. Furthermore, the NN output 𝜑𝑎 and estimated weight 𝜃̂ of ANNFTC 
under different tracking tests are shown in Fig.  6. It is obvious that 
𝜑𝑎 and 𝜃̂ will soon converge and change with the driving period, 
which matches the periodic characteristics presented by disturbances 
in tracking periodic signals. The value of the 𝜑  is as high as 10 to 
𝑎
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Fig. 6. NN output and convergence results of NN under Case 1. (a) NN results 
of 𝑟1. (b) NN results of 𝑟2. (c) NN results of 𝑟3. (d) NN results of 𝑟4.

Fig. 7. Hysteresis compensation results of different controllers under Case 1. 
(a) Results of 𝑟1. (b) Results of 𝑟2. (c) Results of 𝑟3. (d) Results of 𝑟4.

the power 7. This matches the actual disturbance range based on the 
parameters and model identified shown in Eq. (57). This fact indirectly 
validates that the inclusion of the neural network (NN) compensates 
for model uncertainties and hysteresis.

For hysteresis nonlinearity compensation, Fig.  7 presents a com-
parative evaluation of hysteresis loops under different controllers and 
tracking references. The open-loop response, acquired in the absence 
of any controllers, exhibits significant hysteresis. It can be observed 
that with the compensation of NN, the proposed ANNFTC strategy 
achieved the ideal Hysteresis compensation, outperforming both the 
open-loop case and the FTC. In contrast, the FTC alone, while guar-
anteeing practical fixed-time convergence, fails to effectively mitigate 
the hysteresis nonlinearity. These results underscore the essential role 
of the NN component and demonstrate the superiority of the ANNFTC 
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Fig. 8. NN output and convergence results of NN under Case 2. (a) NN results 
of 𝑟1. (b) NN results of 𝑟2. (c) NN results of 𝑟3. (d) NN results of 𝑟4.

approach in simultaneously satisfying both fixed-time convergence and 
hysteresis compensation requirements for PEAs.

5.5.2. Case 2: Results of triangular waves tracking
In order to further test the performance of the ANNFTC in track-

ing multi-harmonic reference, this section is done on the triangular 
waves tracking. Here, the triangular references 𝑟1 to 𝑟4’s amplitudes 
and periods are in accordance with the aforementioned sinusoidal 
references 𝑟1 to 𝑟4. The overall tracking view and errors of FTC, AFTC 
and ANNFTC are shown in Fig.  5. It can also be found that ANNFTC can 
realize the precision tracking of triangular waves within 10 Hz. Similar 
conclusions on the convergence independent of the initial states and 
the NN’s convergence and compensation (shown in Fig.  8) can also be 
drawn. The RMSE (resp. NRMSE) is below 0.121 μ m (resp. 1.34%). 
More detailed data on tracking errors can be found in Table  1. By 
comparing the RMSE of the three controllers at different frequencies 
and amplitudes, it can be observed that, compared to FTC, ANNFTC 
can reduce the error by at least 76.5%, demonstrating better tracking 
accuracy. The tracking performances of AFTC and ANNFTC are also 
similar in this case.

5.5.3. Case 3: Results of disturbance rejection
In order to test the convergence and robustness of the proposed AN-

NFTC under different initial values and external transient disturbance, 
an input disturbance is added when tracking a hybrid reference with 2 
and 5 Hz. The amplitudes of both the two components are set as 2 μ m. 
The disturbance is set as an impulse with an amplitude of −20 V, and 
it occurs at 1.3 s. Furthermore, the initial values of the PEA in this case 
are set as 0 μ m, 0.5 μ m and 0.8 μ m individually. Results of the overall 
tracking performance, the maximum error and the recovery time after 
the disturbance occurrence of the proposed ANNFTC and the AFTC are 
shown in Fig.  9. Quantitative comparisons among the two controllers 
can be made from Table  2.

At the beginning of the tracking task, for the three initial conditions, 
the convergence time of the PEA tracking error under ANNFTC ranges 
from 2.6 to 2.7 ms, exhibiting close consistency. In contrast, under the 
AFTC in [27], the convergence time of the tracking error varies with 
different initial conditions. Furthermore, these durations are generally 
longer than those of ANNFTC, except when the initial state is set to 
0.8 μ m, where the settling time aligns closely with that of ANNFTC. 
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Fig. 9. Results of disturbance rejection for hybrid frequency sinusoidal track-
ing.

These results highlight the fixed-time convergence capability and the 
advantage of rapid error convergence offered by the proposed ANNFTC.

Additionally, under the three initial conditions, the maximum track-
ing error of ANNFTC after a disturbance occurs is comparable to that 
of the AFTC in [27] when the initial state is zero. However, as the 
initial condition changes, the maximum tracking error of ANNFTC 
following a disturbance becomes significantly smaller than that of 
the AFTC, accompanied by reduced overshoot. This demonstrates the 
improved motion smoothness of ANNFTC after disturbance occurrence. 
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Table 2
Statistical control results under disturbance and different initial conditions.
 Initial Statistical Controllers

 value data AFTC in [27] ANNFTC  
 𝑥(0) = 0 Recovery time (ms) 0.7 0.7  
 Maximum transient error (μm) 0.38 0.33(↓ 13.2%) 
 𝑥(0) = 0.5 Recovery time (ms) 0.7 0.7  
 Maximum transient error (μm) 0.85 0.34(↓ 60.0%) 
 𝑥(0) = 0.8 Recovery time (ms) 0.8 0.7  
 Maximum transient error (μm) 0.81 0.36(↓ 55.6%) 

Comparing the error convergence capability of the two controllers after 
a sudden transient external disturbance, the recovery times shown 
in Fig.  9 indicate that the error convergence times for ANNFTC and 
AFTC are largely similar for a transient disturbance. The superiority of 
ANNFTC under input disturbance is primarily reflected in its smaller 
overshoot following the disturbance.

6. Conclusions

To meet the rapid convergence of tracking error and precision 
motion tracking of PEAs with inherent nonlinearities and unmodeled 
dynamics, this paper proposes a novel adaptive neural network fixed-
time control (ANNFTC) scheme. The proposed ANNFTC integrates the 
backstepping method and online neural network compensation, both 
designed according to the fixed-time stability. Meanwhile, the con-
troller eliminates the need for prior knowledge of hysteresis models 
or observers, which makes it easy to implement in practice. Experi-
mental results demonstrate ANNFTC’s superior tracking performance 
compared to fixed-time control (FTC) and adaptive FTC (AFTC) in [27], 
achieving RMSE below 0.121 μ m under 10 Hz and 1–9 μ m triangular 
references. Meanwhile, under the transient disturbance occurrence, 
the ANNFTC performs better on the maximum transient error than 
the AFTC. The significance of this work lies in its dual contribu-
tion: (1) providing a theoretically guaranteed adaptive neural network 
fixed-time control with a novel NN weights adaptive law for PEAs 
under the existence of model uncertainties through rigorous proof via 
Lyapunov analysis; and (2) offering a practical control scheme that 
simplifies implementation by avoiding additional observers or complex 
parameter tuning with adequate experimental validation. The proposed 
ANNFTC can be directly extended to other PEA applications, such as 
nanopositioning stages, microgrippers, or precision surgical devices. 
Future research directions include: (1) Combining the ANNFTC with 
the prescribed-time control for PEAs, and (2) Studying the practical 
application of ANNFTC algorithms in PEAs under varying temperatures 
and external loads.
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