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Piezoelectric actuators (PEAs) are critical in precision motion applications due to their high precision and fast
response. Existing control methods for PEAs rely heavily on the accurate model integrated in the controllers
to realize the precision motion tracking. However, complicated dynamics and inherent hysteresis nonlinearity
bring challenges in modeling and identification. The accompanying model uncertainties bring difficulties for
the rapid convergence of the tracking error and precision motion tracking of PEAs in the application. To
overcome these limitations, this paper proposes an adaptive neural network fixed-time control (ANNFTC)
scheme. The ANNFTC integrates the backstepping method and online neural network compensation, both
designed according to the practical fixed-time stability. Unlike the fixed-time control (FTC) and related works,
ANNFTC requires no prior knowledge of hysteresis while ensuring robustness to external disturbance and
model uncertainties, including unmodeled dynamics and hysteresis nonlinearity. Rigorous proof of practical
fixed-time convergence for the tracking error is provided, along with comprehensive experimental validation
conducted on a PEA. The experimental campaign encompasses reference tracking across frequencies ranging
from 1 to 10 Hz and peak-to-peak amplitudes from 1 to 9 pm, as well as hybrid-frequency sinusoidal tracking
in the presence of input disturbances. Experimental results show that compared to other tested FTCs, ANNFTC
achieves better tracking accuracy and more rapid convergence time of tracking error under different initial
states, the existence of model uncertainties, and the external disturbance.

Fixed-time control
Neural network
Adaptive control
Precision motion

1. Introduction

Precision motion tracking has gained increasing significance with
the rapid growth of micro/nano applications, such as semiconduc-
tor equipments [1], medical devices [2], aeronautical actuation sys-
tems [3], and related fields. Piezoelectric actuators (PEAs) are widely
utilized in these precision motion systems due to their high preci-
sion, resolution, fast response, and compact structure [4]. However,
the motion accuracy of PEAs is degraded by inherent nonlinearities
(e.g., creep, hysteresis) [5] and other model uncertainties in controllers
(e.g., unmodeled dynamics and parameter perturbation) [6,7].

For nonlinearities compensation of PEAs, several effective approa
ches have been proposed for model-based feedforward controller de-
sign [7,8]. However, feedforward schemes alone are not robust to
model uncertainties, as identified nominal models fail to accurately
reflect the real system. In contrast, feedback control methods, which
are more robust without requiring a precise mathematical model of the
PEA, have been explored to improve motion accuracy [9,10]. Within
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feedback control strategies, tracking performance can be ensured by
treating the nonlinearities as unknown disturbances [5]. Lyapunov-
based techniques, such as backstepping control, can guarantee the
stability and tracking accuracy of nonlinear systems like PEAs [11].
However, to the best of our knowledge, most of the feedback control
on PEA’s precision motion tracking focuses primarily on achieving
asymptotic stability, which means achieving zero tracking error only
after an infinite amount of time. This does not meet the practical
requirements of engineering applications. From a practical perspective,
the settling time is a critical performance metric for time-sensitive sys-
tems, as it characterizes the speed at which the system converges [12].
To address this limitation, finite-time control [13], fixed-time con-
trol (FTC) [14-16] and prescribed-time control (PTC) [17,18] have
emerged as prominent approaches within the control community. In
contrast to finite-time control, both FTC and PTC ensure convergence
without dependence on the initial conditions. Compared with FTC, PTC
offers a distinct advantage in that its settling time can be precisely
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preset, whereas that of FTC tends to be overestimated. Moreover,
the settling time in FTC is not an independent tunable parameter,
as it inherently depends on other controller design parameters. How-
ever, PTC often suffers from input saturation, higher online compu-
tational demands, and challenges in incorporating adaptive control
mechanisms [13]. By comparison, although FTC only ensures that the
convergence time remains below a predetermined upper bound, it gen-
erally exhibits simpler controller design, lower real-time computational
requirements, and greater compatibility with adaptive control strate-
gies, making it more amenable to practical engineering applications.
FTC enables finite-time convergence of system dynamics regardless of
the initial condition if the following inequality V(x) < —aV?’(x) —
pV4(x) holds [19]. Nevertheless, when system uncertainty is consid-
ered, achieving fixed-time convergence becomes challenging because
the uncertainty makes it difficult to satisfy the inequality conditions
previously discussed [12]. To address this issue, [20] proposed the
concept of practically fixed-time stability, which relaxes the conditions
of the above FTC inequality.

Due to priority in practical use, FTC is integrated with sliding
mode control (SMC) for the tracking control [21-23]. For the pre-
cision motion of the PEAs, [15] developed a local fixed-time SMC
with an adaptive disturbance observer for a PEA system with unmod-
eled uncertainties. This controller demonstrates superior robustness
and tracking accuracy compared to existing SMC. However, a lim-
itation is that it requires explicit knowledge of the hysteresis part,
h(t), which complicates controller parameter tuning and design. [16]
proposed a fast fixed-time adaptive SMC method that exhibits excellent
dynamic tracking performance, steady-state behavior, and robustness
to lumped disturbances. Nevertheless, this approach involves many
adjustable parameters, requiring not only a system model that incor-
porates the explicit hysteresis part but also parameters for both the
FTC and SMC. Meanwhile, SMC appears less suitable for PEA systems
due to their rapid motion, significant model uncertainties, and lightly
damped dynamics—factors that can induce control chattering and com-
plicate SMC design. In summary, the aforementioned FTC methods
for PEAs require sufficient prior knowledge of the system’s dynamics
and hysteresis nonlinearity. The implementation of this method entails
increased controller complexity and poses subsequent challenges for
parameter identification and tuning.

In cases where a system is entirely unknown or uncertain, neural
networks (NN) perform online estimation of unknown nonlinear dy-
namics [24-26]. With respect to these circumstances, the FTC with NN
compensation seems more suitable for realizing practically fixed-time
stability to nonlinear systems like PEAs with disturbance and uncer-
tainty. Several existing studies have investigated NN-based FTC for
nonlinear systems [27-30]. However, the adaptive laws for NN weights
proposed in [27-29] only ensure asymptotic stability. This limitation
fails to theoretically guarantee simultaneous convergence of NN weight
estimation errors and system state errors, often resulting in slower
convergence rates and degraded tracking performance in the presence
of transient disturbances. Although the adaptive law introduced in [30]
incorporates a fixed-time convergence term, it utilizes a hyperbolic
tangent (tanh) function whose argument depends on the product of
the norm of the network basis function vector and the state error. This
formulation is susceptible to saturation effects when either the error
magnitude or the norm of the basis function vector is large, ultimately
impairing convergence speed. Hence, a modified NN weights adaptive
law with the fixed-time and rapid convergence property needs to be
developed for PEAs.

Motivated by the aforementioned essential issues, a novel adaptive
neural network fixed-time control (ANNFTC) scheme is developed in
this work to enable high-precision and rapid convergence of track-
ing error of PEAs under the existence of external disturbance and
model uncertainties, including: (1) complex hysteresis nonlinearity and
(2) unmodeled dynamics. The main contributions of this paper are
summarized below:
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» A modified adaptive neural network control scheme with a novel
NN weights update law is developed to realize the fixed-time conver-
gence of tracking error. The only prior knowledge required for the
controller is a standard second-order LTI model of the PEA, which is
easy to identify and gain. A detailed theoretical proof of the controller
design and practical fixed-time convergence is provided.

o Through an elaborate design, the proposed ANNFTC effectively
handles the issues of nonlinearities, unmodeled dynamics, and external
disturbance. For practical implementation, the state variables required
by the control law are filtered with a stable filter, eliminating the
need for a state observer and simplifying the control scheme. Detailed
discussions on the proposed ANNFTC’s performance are conducted via
comprehensive experiments, along with comparisons to other FTCs, to
illustrate the superiority of the proposed method.

The overall structure of the paper is outlined as follows. Section 2
introduces several essential lemmas needed in the controller design and
the problem formulation. Section 3 gives the presentation of the pro-
posed ANNFTC and its detailed practical fixed-time convergence proof.
Section 4 provides a preliminary simulation of error convergence using
ANNFTC, along with comparison results from the other controllers,
including traditional FTC, the widely-used PID controller, and the
finite-time control. Section 5 elaborates on the experiential setup and
the closed-loop experiments with ANNFTC on the PEA, comparing the
tracking performance and hysteresis compensation with the traditional
FTC and the adaptive FTC with NN (AFTC) in [27]. Finally, Section 6
presents the conclusions.

2. Preliminaries and problem formulation
2.1. Preliminaries

This section firstly introduces some key lemmas related to fixed-time
control, which are required in the proof process of the proposed method
in this paper.

Lemma 1 ([27]). Consider the nonlinear system as follows
x(@) = f(x(1)), x(0) = x. (@)

If there exists a selected Lyapunov function V (x) with some design constants,
a,f>0,p>1,0<q<1,0<n < oo such that

V(x) < —aVP(x) = pVI(x) + 1, (2)

then with a constant 0 < y < 1 introduced, the state of this system in Eq. (1)
is practical fixed-time stable for any initial condition x,, and the settling time
T is estimated by

1 1

T <Thax = . 3
=T = -1 T Bwli -9 ®
The residual set of the solution of the system x = f(x) is given by
. n 1/p n 1/q
xe{V(x)Sml"{<<1—w)a) (a7 ) }} @

Lemma 2 (Young’s Inequality). For a,b > 0,p > 1,1/p+ 1/q = 1, the
following inequality holds

a’ bl

ab<s L+ = ®)
P4

Lemma 3 (Cauchy-Schwarz Inequality). : For x,y € R", the following
inequality holds

Ty’ <xTx- )T ©)
Lemma 4 ([31]). For real variables z and ¢, and any positive constants u,
n and 1, the following inequality is true:

U n_,
+n

_K
lz1#1¢1" < p 2] + vlg|. @
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Lemma 5 ([14]). For h > 0,x > 0,y > 0, the following inequality holds

Xy —x) < H;h(y“” — xI+h). ®)

Lemma 6 ([14]). For h > 1,x > 0,y < x,y € R, it holds that

(x=p" 2y —x". ©)

Lemma 7 ([32]). For any real numbers x;,i =1,...,nand 0 < b < 1, the
following inequality holds:

U]+ + 1D < g 1P+ -+ x| (10)

Lemma 8 ([33]). For all positive numbers x;,i = 1,2, ...,n, it holds
n n 14
Zxﬁz(in) 0<y <1,
i=1 i=1
n

, an

n
x?Zn]_y< Zx,-) y> 1.

i=1 i=1

2.2. Problem formulation

Consider the following second-order system of a PEA to be con-
trolled,

mi+cx+kx=Tu+ f, 12)

where m, ¢, k are the equivalent mass, damping, and stiffness. x is
the output displacement of the PEA, x and % are the velocity and
acceleration, respectively. u is the input signal to actuate the PEA and
T is the electromechanical ratio, and f are the unknown disturbances
which is caused by the model uncertainties in this paper.

Define x; = x, x, = X, the system dynamic is reformulated by

X| =X,
P SR A 13)
m m m m

=—ayx, —a;x; +bu+d.

The goal of this paper is to design an adaptive controller with fixed-time
convergence for the aforementioned second-order system of a PEA.

3. Adaptive neural network fixed-time control

To realize the adaptive fixed-time control of the PEA system in
Eq. (13), two error variables, denoted as z; = x; —x,, z, = x, —v, where
x4 is the reference signal, v represents a virtual term, are introduced.
Then, the tracking error dynamics are represented by

{zlle—xd:z2+v—xd,

Zy =Xy —V=—ayXy —a; x| +bu+d—v.

(14

Next, use the backstepping method to deduce the control law, which
can be divided into three steps as follows:

Step 1: Define Lyapunov function ¥, = z% /2, the time derivative of
V, is computed as
Vi =212 = 21(2) + v — Xy). 15)

The virtual term v is designed as

v = —ky|z|%sign(z;) — ky|z, |+ sign(z) + x4, 16)
0<a<l1,peN"t.
Then, substitute Eq. (16) into Eq. (15), one can obtain
Vi =z, ( 2, — k12, |%sign(z,) — ky|z, |+ sign(z, )+
a7

Xq = %4 >= —kylzg 1T = k|2 PPD 4 225,
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Step 2: Define Lyapunov function V, = z% /2, the time derivative of
V, is computed as

Vz=z222=z2(—a2x2—alx1+bu+d—\'/>. 18)
Then, the control law is designed as
u= 1 (\'/+a2x2+a1xl -z, —-1/2z,
b a9
— ky|zy|%sign(z,) — ky|z, |+ sign(z,) + @, )

where ¢, is the adaptive term to be determined. Substitute Eq. (19)
into Eq. (18), one can obtain

Vz =2 ( —apyxy —ayx;+v+ayx; tapx; —z;—

1/22, — ky|2,|%sign(z,) — ky|2z,|**sign(z,) + @,

1, 1 2p+1 (20)
+d—v ): 212 = 323 = ksl nl ! — kgl PO
+ 2@, + 2,d.
Then, add Egs. (17) and (20), one can obtain
Vi4Vy == kylzy | = kylzy PP — ks |2y -
(21)

1
ky|zp |2PHD — Ez% + 2y, + 25d.

Step 3: Here, the NN-based adaptive control law is to be designed.
Supposing the number n of the node is chosen large enough, the
disturbance d in Eq. (13) is calculated as

d=f(X)=WTy(X)+e,le| <é, (22)
and make
O=WTW,0=60-0. (23)

Theorem 1. For the system in Eq. (13), if the adaptive law is given as
1 R
Pa == 7522w (X) WX,
2u

A 1 ~ A
b=y ( ngy/(X)Ty/(X) — 26,0 — 5,62+ )

é _ /édt,
0,

and the control law is Eq. (19), the practical fixed-time stability can be
achieved. The constraints of the 0 here is used to ensure the value of  is
nonnegative, which is crucial for the subsequent proof.

24
if6>0
ifh <0,

Proof. Substitute Eq. (24) into Eq. (21), one can obtain
Vl + Vz == kl|21|'ﬂrl - k2|21|2(ﬂ+1) - k3|zz|a+l+
Zy@g + 2od = —ky |2y | = ky |2y |PPFD -
2 1
k3|22|a+| — k4|2, (B+1) _ Ezg— (25)

3 YW 00~ )+

2 (W Tw(X) +¢).
Another Lyapunov function is designed as
1 5
V3 =—0". 26
3= 3, (26)
Applying Eq. (24), the differentiation of V; is

V3 =— %éé =-0 ( T;ﬂzgw(X)Tw(X) - 20‘14§ - 62§2ﬁ+1 )
27)
=- Lz%l;/(X)Tl//(X)g + 20,00 + 6,007+,

2
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Then, add Egs. (25) and (27), one can obtain Finally, combine the Eq. (28) and the inequalities in (29), (30), (34)
and (36), the following inequality holds

Vi+ Vo + Vs =—kilz) "M = kylz) PPHD — ks 2y |*H! =
Vi+Vy+V; < —kilz |t — kylz, |2h+D)

1 1
kglzp PD = 523 — o — 20 w(X)

2
1
~ — kalzo | — k|2 PO 4 g 2
0 =0)+ (W Ty(X) + €)— 3122 4lzal 2 2

i o Lo (=) 4\ @7
— Z2y(X) W (X)d + 20,00 + 5,602+ o101 + 1—( e ) 40,0
2u? (28) 2 62
= —ki |z, 2] = 2 [2B+D g e 2(ﬂ+1)+ 2 92+D)
12|ﬂl| 1 2| (PO =kl - 51y 1
(B+1) _ T
kalz| 7% 242 (X)) w(X)0+ Write the positive numbers in the Eq. (37) as C, one can obtain
LW Tw(X)+ zpe + 20,00 +06,007P+" Vi+ Vo + V3 < =k |21 = Ky 2z |2(ﬂ+1) — k|2, |* =
~ a+1 2(ﬂ+])
Term 1 Term 2 Term 3 Term 4 k4|zz|2(ﬂ+l) —o6] 18]
2(1 + ﬁ)
) 1) T;rmdlbi The following inequality is obtained according to ”_2 N 1 2,0 a _a)( l+a ) %:4—
emmas 2 an i > T3 — (=
0y 38
W W0 <= @ W Ty (O W Ty(x) + 2 0,07 + 22 g20+D) 38)
2u? 2 +/
1 0r o = —ky 17| = ey |z POHD — kg |zt -
= — (W yX)) +
2u? kylzo POHD — 610" - T2y
) . . > (29) 2(1+p)
<37 (WTw 0w ) +5 LcC
o 2 Then, with V =V, + V, + V3, it holds
R T
20w (X) y(X) + 2. atl atl
2 . a+l a+l
Tl 2 Vs—z%kl(lzz)2 -2%k3(1z2)2-
271 272
(2) Term 2: Use the Lemma 2, the following inequality is obtained atl
T L)\ p1 15\ 39
1 1 2y)2 61<ZG ) -2 k2< Ezl> - 39
12,122 1 f+1 p+1
Zpe < =25+ =€ (30) 1 L 2p)Ptley 11 5,
29273 Pky(52) —(—9) +C.
H\ 2% 2045 \ 2
(3) Term 3: Firstly, according to Eq. (24) and Lemma 2, one can Define the following variables as
obtain . atl a+l a+l
P :mm{z T kL2 ke (20) 2 61},
200 = 26(0 — §) = —26° + 260 < —20% + 6> + 6> = —0% + 6°. (31) e (40)
p, =min {2ﬁ+‘k2,2ﬂ+1k4, =2 } .
Make that 20+ )
} . L .
Z=92,C=1,/4=p,71=1—p,l=l,0<p=a+1 <1 (32) According to Lemma 7, it holds
p 2 wrt wtt atl atl
Vi +Va+V3) 2 <pV) 2 +pV, 7 +p V70
Then, according to Lemma 4, the following inequality holds w 1 wl 1 et
e 2Tk (37) 7 2T k(52) 7+
~ ) £ o l—af l+a \T« 2 2
(19)2 <0°+(A-pplr =0°+ ( ) atl
2 2 (33) atl L\
s enTo( 5,0) a1
—§2<—éa+] —a( a)lfa.
<O+ = 2 el

Finally, combine the inequalities in Egs. (31) and (33), the following » »
inequality holds y 1 s atl 1o\ 7
k3( 27‘2) @n> ”1(2/9 ) :

I+a
1-a e
26,00 < -0, |9|'7’Jrl %( ! -;a ) Ty 0,6°. (34 If n = 3, according to Lemma 8, it holds

. _ 3P+ Va + VP < p VI VI 4 !
(4) Term 4: According to Egs. (22) and (24), 0 > 0,0 >0 and 6 < 6. P23 2 3) e 2% P73

p+1 p+1
Hence, it can be obtained with Lemmas 5 and 6 < 2ﬂ+1k2( %z% ) + 26+ ( z ) +
8029+ = (o — 9)02ﬁ+1 (OXP+D _ g2+ (2},)/?+10-2( 1 )ﬂ+l
__ L 02(ﬂ+l) 0 — §2+D
21+ ﬁ)( ( ) ) 35) = —p, 3PP > bt ( )
1 2B+1) _ (G2B+D) _ p2(p+1)
S2(1+ﬁ)(0ﬂ - @0 - ) 20+1k<12)ﬂ+1 w<i
2% 2145 \ 2
2(1_+ﬂ)| |2(/i+l) Hl_ﬁgﬂl’“), Finally, combine the 1nequa11t1es in (39), (41) and (42), one can
obtain
Theref «
erefore, V< _pr%l -3V L C0<a <1, N (43)
o002 < 1BPPD 4 %2 g2+ (36) -
2 = 2(1 + ﬁ) [ ’ Thus, Theorem 1 is proved and the practical fixed-time stability is

achieved.
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I Stable Filter | &y | State Calculation !
XI | oy = 5y & Mg+ g = @, z17(0) =0, e Top = d1f :
X4 : zdf:%@Aidf'i‘mdf:zd, wdf(O)ZO: Zof = Taf — Vf :
| 21f = T1f — Taf | I
- 1
) 22f | X=[xi, xo]
R1f Tdf I
:?/i;tu_afcgrﬂra_______________I :NNUpdatingLaW :
a . . . A 1 N 5
: vp = — ki|z1g|* sign(zis) — kolz1s) T sign(ziy) + das | : 0 :(TMZ%MX)W(X) — 2016 — 6292ﬂ+1> :
______________________ 1 b= - = J1
vf él X=[xyy, 0]
e | : RBF Neural Networks :
: Stable Filter | I 1 ) TP |
P | o = — ——=2
ap | 1M = wE Wty =y, v(0) =01 P f 22 :
- ___" | A e A
z1p | é:{fﬂdt, i#0=0
. 22f | | o, if <0 |
vy Tof L ________ |
lsoa
= ~ _ Y __ Y_Y |
|ANNFTC |
| |
1
Iy =—(@s+ asx a5 — 217 — 1/229¢ — ks|29¢|® sign(z I u PEA
| b( £+ ooy + a1x1y — 215 — 1/2205 — ka|2a5|” sign(225) > PEA
| k 28+1 . |
I —kalzg ™ sign(eaf) + a |

Fig. 1. The control block diagram of the proposed ANNFTC.

According to the aforementioned controller design, the overall con-
trol law of ANNFTC is:

u :% ( V4 ayx, +a;x) — z; — 1/2z, — k3|z,|*sign(z,)

= kylzs P sign(zy) + 0, ).
v =—kilz;|%sign(z,) - kylz, |+ sign(z,) + %,

0<a<l1,peNT, (“44)

1 A
Pa == 7522w (X WX,
2p

b=y ( ﬁzgw(xfw()() — 20,0 — 0,02+ ) .

From Eq. (44), it can be found that the derivatives of the intermedi-
ate variables and state variables are introduced. However, in practical
applications, the differentiation process amplifies measurement noise
and exists singularity issue in the differentiation of sign function shown
in Eq. (44), potentially compromising system stability. Hence, in prac-
tical use, by applying a stable filter (1 / (4 s+1)) to the variables v, x|,
and x,, filtered variables are introduced as:

v §
ViE——— S Wty =V
B 45)
Vf= R Vf(0)=07
X1 .
Xip= P & Axlf + X1 =% > )
. X1~ Xy
xlf:T, xlf(0)=0»
X4 .
xdf=/1s—+1©/1xdf+xdf=xd—> @
by = ot 0)=0
xdf—T’ x47(0)=0,

where 4 > 0 is a filter parameter which is designed to guarantee that
the cutoff frequency is much higher than the frequency of the tracking
signal so that the filter error is neglected. Furthermore, x,, = X,

z|f=x1f—xdf, sz :x2f—Vf.

250

Replace the filtered variables in Eq. (44) with Egs. (45)-(47), the
final control force applied to the PEA system is as follows:

1
u=-

b
@ 2p+1 3
k3lzyp|*sign(z, ) — kylzy 7| sign(z, ;) + @, )

(\‘/f +ayxyr tayx =z —1/225—

Vi =—kilzy |%sign(z, o) — kylz f[PPF!

0<a<l1,peNT,

sign(zy7) + X4, 48)
48

1 R
$o=- ﬁzzfu/(X)Tw(X)e,X, =[xy 7. X1,
A _ 1 » T A A20+1
b=y ( 2a VT W 0 - 20,0 - 030 ) .

The overall control scheme is shown in Fig. 1.
4. Preliminary simulation of error dynamics

A simple system shown in Eq. (49) is used to test the convergence
of error with different controllers, including: the PID, FTC, Finite-time
control and the proposed ANNFTC

X=u+d,e=x—xg4 (49)

where x is the state variable, u is the input and d is the disturbance. x,
is the desired state and e is the tracking error. Then, the derivative of
the error can be obtained:

é=u+d. (50)

To control the system in Eq. (49), the control laws of the controllers
are listed as:
(1) PID

u:—kpe—kl-/edt—kdé,
(51)
e'=—kpe—k,-/edt—kdé+d.
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(2) FTC:

[26+1

u=—kyle|sign(e) — k,|e sign(e). (52)

(3) Finite-time control:
u = —kle|*sign(e) — kye. (53)
(4) ANNFTC:

u=- % — ky|e|*sign(e) — k,|e|**sign(e) + o,

1 T
- ﬁeu/(X) v (X)0,

1 o
( = Pu(X) T W(X) — 20,0 — 0,67 ) :
2p

Pa = (54)

0=y

This section aims to validate the accuracy and effectiveness of
the proposed ANNFTC by testing two scenarios: the absence of dis-
turbances and the presence of disturbances. Firstly, the parameters
without disturbances are set as follows:

(1) PID: k,=10; ks =1; k; =0,

(2) FTC: ki=1, k=1, a=0.1; p=1,

(3) Finite-time control:  k; =5; k, =1; a=0.1, (55)
(4) ANNFTC: k=1 ky=1; a=0.1; f=1;

u=Ly=10; 61 =1; 0, =1,

According to the parameters in Eq. (55) and the maximum setting time
calculation which is shown in Eq. (3), the maximum setting time T}, =
2.0198. The detailed error convergence and dynamics in this case are
shown in Fig. 2. It is evident that, compared to the PID and Finite-time
control, both FTC and ANNFTC achieve fixed-time error convergence,
with the settling time controllable within the maximum convergence
time 7,,,,, calculated using Eq. (3). In this case, different initial error
states are also considered to evaluate the initial-independence priority
of the fixed-time convergence for both the FTC and ANNFTC. As shown
clearly in Fig. 2, with three different initial error values (10-20-40),
both FTC and ANNFTC can achieve fixed-time error convergence within
the maximum convergence time 7,,,,. In contrast, the settling time of
Finite-time control increases with the rise of initial error values. This
further verifies the rationality and superiority of the FTC and ANNFTC
designed in this paper. Meanwhile, with the assistance of the neural
network, ANNFTC demonstrates a faster convergence speed than FTC,
even in the absence of disturbances.

Next, consider the case with disturbances. The parameters in this
case are set with disturbance d =1 - cosQ2x - 1-1):

()PID: k, =10k, = L;k; =0,
QFTC: k, =l;ky = l;a=0.1;p=1
(3)ANNFTC-1: k| =1;k, = L;2a=0.1;=1; (56)
u=Ly=10;0, =0, =1,
(4) ANNFTC-2: k| =1;k, =L;a=0.1;=1;
u=1y=10;0y =0, = 1076,

The detailed error convergence and dynamics in this case are shown
in Fig. 3. It can be found that with the help of neural network compen-
sation, the ANNFTC shows better convergence speed and smaller error
than FTC and PID under the disturbance. Meanwhile, smaller value

of o, and o, will help accelerate the convergence speed and tracking
accuracy, which can serve as the parameter tuning method of ANNFTC.

5. Experimental evaluation
5.1. Experimental platform
The experimental evaluation was conducted on a custom-built plat-

form incorporating a piezoelectric stack actuator (PEA) (Fig. 4(a-b))
to validate the effectiveness of the proposed ANNFTC. A piezoelectric
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Fig. 3. Error convergence with different parameters for disturbance compen-
sation.

stack (NAC2015, Harbin Chip Technology Co., Ltd) with a 12 p m
stroke and a maximum driving voltage of 100 V was used for actuation.
The control system is based on an xPC Target real-time platform,
consisting of a host PC, a target PC, a PCI-6259 motion acquisition
card, and an interface board. Control signals (0-10 V) are generated in
real time via the 16-bit digital-to-analog converter of the data output
module in the xPC Target environment. A custom-built power amplifier
with a fixed gain of 30 amplifies the control signal to provide the
driving voltage for the PEA. Displacement of the PEA is measured using
a capacitive displacement sensor (E09.Cap, Harbin Core Tomorrow
Science & Technology Co., Ltd).

5.2. System identification

A high-amplitude (100 V) step response test is conducted to identify
the nominal model G(s) in Eq. (12). A second-order LTI model is
obtained using the System Identification Toolbox in MATLAB as,

2.63 % 10°

= . (57)
s2 +5300s + 2.534 x 107

G(s)
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Fig. 4. Experimental setup and system identification results. (a) Block diagram of signal flow. (b) Experimental system. (c) Identification results with a step
response and the evaluation of sensor noise. (d) Tested hysteresis nonlinearity of the PEA.

The identified result is shown in Fig. 4(c). It can be found that
the steady state of the identified model fits well with the measured
experimental data, but the transient part does not fit well. Hence, the
unmodeled dynamics caused by the identification process exist and
need to be treated as the unknown disturbance as Eq. (12) shows.
Therefore, the nominal parameters are m = 1, k = 2.534 x 107, b = 5300.
These parameters are used in the ANNFTC as Egs. (13) and (48) show.
Meanwhile, the sensor noise in experiments can also be found in Fig.
4(c). The amplitude of the random noise is generally within +0.05
p m. Subsequent closed-loop experiments will verify the controller’s
robustness against noise of this magnitude.

Furthermore, the hysteresis nonlinearity of the PEA is demonstrated
in Fig. 4(d), which depicts the response under a 1 Hz harmonic driving
signal with ascending voltage amplitudes (0, 25, 50, 75, and 100 V).
It can be observed that the PEA exhibits significant hysteresis loops,
and the actual displacement under harmonic excitation deviates from
the output predicted by the identified model to be used in controllers.
Therefore, the model uncertainty caused by hysteresis nonlinearity
must be regarded as an unknown disturbance, as formulated in Eq. (12).
This observation underscores the motivation for the control strategy
proposed in this study.

5.3. Controller set

The priority of the fixed-time convergence under different initial
values of ANNFTC has been sufficiently evaluated and compared with
PID, FTC and Finite-time control by simulations in Section 4. Here, to
evaluate the tracking performance of the proposed ANNFTC for preci-
sion motion control of PEAs in the presence of hysteresis nonlinearity,
unmodeled dynamics, and external transient disturbance, ANNFTC is
tested by closed-loop experiments in comparison with the FTC and the
adaptive FTC (AFTC) in [27]. The controller set for each controller is
listed as follows.

5.3.1. FTC

The FTC here is designed with the backstepping method and a stable
filter (1 / (4 s+1)) is applied to the variables v, x;, and x,. The overall
control law of FTC is applied as follows

1/
u=y (vf+02x2f+a1x1f—z1f—z2f/2+u1f ),

|2p+1 (58)

vy = —klzi|"sign(z, ;) — kylzi 5
Uy = _k3|Z2f|aSign(zzf) - k4|22f

sign(z,z) + X5,
|2ﬁ+lsign(zzf).

The filtered variables calculation is done as Egs. (45)-(47) show.

5.3.2. ANNFTC

The radial basis function network (RBFNN) is adopted to approx-
imate the unknown nonlinearity and dynamics in ANNFTC. From
Eq. (24), w(x) is the Gaussian function with y(x) = [wl(x), Wo(x), ...,
wM(x)]T € RM, and for a M-nodes neural network, the radial basis
function of the kth neural network layer is

>,k:1,2,...,M.

where ¢, = [¢1,¢eas - cin] € RN is the kth neural network layer’s
center vector, L is the width of the Gaussian function, M, N € R*. In
this paper, the input vector of the RBFNN is x = [x;,,x, f]T so that
N = 2. The overall control law is as Eq. (48) shows.

=l =

7L (59)

w(X); = exp <

5.3.3. AFTCin [27]

The AFTC is designed with FTC and neural network (NN) compen-
sation. The difference between the AFTC and the proposed ANNFTC
is mainly the adaptive law of the weights of NN. Compared to the
adaptive law of AFTC which is designed with asymptotically stable
property, the law of ANNFTC can guarantee the fixed-time convergence
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of the estimated error of weights. The overall control law of the AFTC
is
1

u=- (\'/f+a2x2f+a1xlf—zlf+ulf+<pa )

b
v =—kylz) |7 sign(z, ) — kolzy o127 sign(z, ) + X4
Uy = —k3|22f|2p715ign(7~2f) - k4|22f|2qflsign(742f)~ (60)
1 s
Pg =— ﬁzsz(X) w(X)0, Xf = [x1f=x2f],

A 1 ) T A
0= (3amp0Tv0 -0 ).

The NN used in AFTC is also the RBFNN which is the same as the one
introduced in Section 5.3.2.

5.4. Parameter tuning

The determination and tuning of the parameters of ANNFTC can be
summarized as the following detailed steps:

(1) Tuning the control gain k;(i = 1,...,4) and the exponential
Values of a and g of the FTC part. The selection of the gain parameter
k; is critical for system performance, as overly small values impede
convergence rate while excessively large values induce oscillatory be-
havior. Since z; represents the displacement tracking error and z,
represents the velocity tracking error, the corresponding gains k; and
ks for z; can be tuned to higher values to ensure fast convergence of
the tracking error. Conversely, the gains k, and k, corresponding to
z, must be constrained to lower magnitudes than k; and k5 to prevent
system instability and oscillations driven by amplified velocity error
dynamics. Based on extensive simulation and experimental analysis, the
following parameter values are determined: k, is set to 1000, while k,
is selected as 0.1, falling within the stable range of (0,0.2] where larger
values would trigger undesired oscillatory responses. In comparison, &,
and ks offer greater tuning flexibility within experimental validation,
yet remain bounded to avoid interference with the stabilizing effects
of k; and k4. Accordingly, k, and k; are assigned values of 200
and 50, respectively, ensuring balanced dynamic performance without
compromising system stability. Based on Eq. (48), « should be selected
in the range of (0,1). Hence, a is taken here as 0.5, which is the
intermediate value. § can be selected as a positive value. Here, f is
selected as 1, which is close to the value of « to balance the effect of
the two parameters.

(2) Tuning the parameters of NN: 4, 7, o; and o,. Based on Eq. (2),
(4), (37) and (40), small values of u, oy and o, and large value of y
guarantee the estimation accuracy of NN. However, too large y with
too small y, o; and o, will cause the oscillations. From the simulation
test, u falls within the stable range of [0.45,0.8] and y should be
tuned within [10,150] to avoid oscillations. Here, for pursuing high
estimation accuracy of NN, u is set as 0.5 and y is set as 100. o; and
o, should be tuned in accordance with the value of the real model
uncertainty. Other parameters like M, N, and L of the RBFNN are
not key to choosing since the weights of RBFNN are tuned online in
the control process. The values are selected by experience based on the
Refs. [25,26].

(3) After determining the parameters of FTC and NN parts, the rest
parameter is the filter parameter 4. The bandwidth of the stable filter
(1 / (4 s+1)) is set higher than the maximum tracking frequency to
account for the influence of sensor noise and the singularity problem of
the calculation of the state variables. From simulation and experimental
tests, the cutoff frequency of the filter must be set to at least three
times the tracking frequency to avoid affecting tracking accuracy. In the
experimental setup, the filter cutoff frequency is set to 50 Hz (higher
than three times the frequency of the experimental tracking signals
described later) for ANNFTC. The lower cutoff frequency in ANNFTC
is necessitated by the structure of the controller: the raw control
signal prior to filtering contains high-frequency components originating
from the neural network output. This noise makes the signal more
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susceptible to oscillation, thereby requiring more aggressive filtering
to ensure stable operation.

Based on the parameters of ANNFTC, in both FTC and AFTC, the
same parameters as those in ANNFTC are preliminarily initialized to
be consistent with ANNFTC. Subsequently, considering that the actual
experimental platform suffers from the inevitable uncertainties, some
parameters of FTC are tuned carefully by an iterative trial and error
method to avoid oscillations. Further, since the adaptive law of AFTC
differs from ANNFTC, the value of ¢, and y are tuned by experiments
for the excellent tracking performance of AFTC, while other parameters
are kept the same of ANNFTC. This ensures that the comparison of
outcomes achieved are suitably fair, as each specified controller has
essentially been appropriately and properly tuned. All the parameters
used in the experiments are listed below.

Parameters of FTC:

a=05,8=1,4=0.003183
(61)
ky, = 1000, ky = 10, k5 = 10, k, = 0.1
Parameters of ANNFTC:
a=05,8=1,4=0003183
ky = 1000, ky = 200, k3 = 50, k, = 0.1
M =10,N =2,L=045u=05,6, =1x 107,
0, =1x107%,y =100 62)
-10 -1 -05 =01 —0.5
10 1 05 01 005
©=1_200 -100 -50 -1 -os5 |90
100 10 50 10 50
Parameters of AFTC:
p=0.75,g=1,4=0003183
ky = 1000, ky = 200, k3 = 50,k = 0.1
M=10,N=2L=0454u=05,6,=10,y =10
) -10 -1 =05 -01 =005 (63)
10 1 05 01 005
©=1_200 -100 -50 -1 -o5 |90
100 10 50 10 50

5.5. Tracking results of ANNFTC

As mentioned above, the design purpose of the ANNFTC is to realize
the rapid convergence of tracking error for precision motion tracking
under the model uncertainty and external disturbance. To validate
the effectiveness of the proposed controller, sinusoidal and triangular
trajectories ranging from 1 to 10 Hz and 1 to 9 p m are used for the
references. External disturbances are also added in the experiments. To
quantify the tracking errors of different controllers, some error indices
are defined as:

T, (x-xg ()
Crms = n ’
Corms = 22 X 100%,

€max = max (|x(i) — x4(1)]) »

(64)

where e,,., €,.s and e,,. are the root-mean-square error (RMSE),
nominal root-mean-square error (NRMSE) and the maximum tracking
error, respectively. x and x, are the output displacement of PEA and
the reference trajectory, i is the sampling number, A is the reference
stroke, n is the total number of the data.

5.5.1. Case 1: Results of sinusoidal waves tracking

To test the performance of the proposed ANNFTC in precision
motion tracking, sinusoidal waves with different amplitudes and fre-
quencies are set as the reference in this section. The first sinusoidal
reference r; is: r;(t) = 2.5sin(2zt — 0.57) + 3.5, the second one r, is:
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Case 2: r; and r;. (d) Tracking results of Case 2: r, and ry.

Table 1
Statistical control results under different tracking references.
Reference Statistical ~ Sinusoidal tracking Triangular tracking
trajectories  data FTC ANNFTC (Compared to FTC)  AFTC in [27] FTC ANNFTC (Compared to FTC)  AFTC in [27]
ry ems (Hm) 0.570  0.067 (| 88.3%) 0.097 0.568  0.071(l 87.5%) 0.100
enax (um)  0.932  0.435 0.477 0.983 0.428 0.458
ry €rms (Hm) 0.517  0.081 (| 84.3%) 0.133 0.515  0.093(] 81.9%) 0.134
enax (um)  0.885  0.432 0.458 1.292 1.085 0.501
ry ems (Hm) 0.629  0.076 (| 87.9%) 0.114 0.635  0.082(] 87.1%) 0.119
emax (Mm)  1.075  0.353 0.448 1.011 0.394 0.435
ry ems (Hm) 0.491  0.105 (| 78.6%) 0.163 0.515  0.121(] 76.5%) 0.165
enax (pm)  1.067  0.453 0.560 1.067 0.445 0.486

Fo(t) = 2.5sin(20xt — 0.57) + 3.5, the third one r; is: r3(t) = 4sin2zt —
0.57) + 5, the fourth one r, is: r,(t) = 4sin(20xt — 0.57) + 5. Overall
tracking view and errors of FTC, AFTC and ANNFTC are shown in
Fig. 5. It can be found that the proposed ANNFTC can realize the
precision tracking of sinusoidal waves within 10 Hz. The RMSE (resp.
NRMSE) is below 0.105 p m (resp. 1.17%). Due to hysteresis and
model uncertainty, as Fig. 4(c-d) shows, without NN compensation, the
tracking errors of FTC are significantly larger compared to the ones
of ANNFTC. This demonstrates the robustness of ANNFTC to model
uncertainties, while also highlighting the limitations of FTC and the
necessity of ANNFTC. Meanwhile, compared with AFTC, the priority of
ANNFTC in tracking performance is not obvious. This is because the
AFTC is also integrated with NN compensation. However, compared to
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AFTC, the superiority of the ANNFTC designed in this paper lies in the
fact that the estimation weight errors of the NN also achieve fixed-time
convergence. Therefore, ANNFTC exhibits faster convergence speed and
greater robustness to transient disturbances compared to AFTC. Hence,
the priority of ANNFTC over AFTC will be obvious when the initial
value changes and external transient disturbance exists. This case is
shown in the following Section 5.5.3.

More detailed data on tracking errors of Case 1 is listed in Table
1. Furthermore, the NN output ¢, and estimated weight § of ANNFTC
under different tracking tests are shown in Fig. 6. It is obvious that
@, and § will soon converge and change with the driving period,
which matches the periodic characteristics presented by disturbances
in tracking periodic signals. The value of the ¢, is as high as 10 to
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the power 7. This matches the actual disturbance range based on the
parameters and model identified shown in Eq. (57). This fact indirectly
validates that the inclusion of the neural network (NN) compensates
for model uncertainties and hysteresis.

For hysteresis nonlinearity compensation, Fig. 7 presents a com-
parative evaluation of hysteresis loops under different controllers and
tracking references. The open-loop response, acquired in the absence
of any controllers, exhibits significant hysteresis. It can be observed
that with the compensation of NN, the proposed ANNFTC strategy
achieved the ideal Hysteresis compensation, outperforming both the
open-loop case and the FTC. In contrast, the FTC alone, while guar-
anteeing practical fixed-time convergence, fails to effectively mitigate
the hysteresis nonlinearity. These results underscore the essential role
of the NN component and demonstrate the superiority of the ANNFTC
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approach in simultaneously satisfying both fixed-time convergence and
hysteresis compensation requirements for PEAs.

5.5.2. Case 2: Results of triangular waves tracking

In order to further test the performance of the ANNFTC in track-
ing multi-harmonic reference, this section is done on the triangular
waves tracking. Here, the triangular references r, to r,’s amplitudes
and periods are in accordance with the aforementioned sinusoidal
references r; to r,. The overall tracking view and errors of FTC, AFTC
and ANNFTC are shown in Fig. 5. It can also be found that ANNFTC can
realize the precision tracking of triangular waves within 10 Hz. Similar
conclusions on the convergence independent of the initial states and
the NN’s convergence and compensation (shown in Fig. 8) can also be
drawn. The RMSE (resp. NRMSE) is below 0.121 p m (resp. 1.34%).
More detailed data on tracking errors can be found in Table 1. By
comparing the RMSE of the three controllers at different frequencies
and amplitudes, it can be observed that, compared to FTC, ANNFTC
can reduce the error by at least 76.5%, demonstrating better tracking
accuracy. The tracking performances of AFTC and ANNFTC are also
similar in this case.

5.5.3. Case 3: Results of disturbance rejection

In order to test the convergence and robustness of the proposed AN-
NFTC under different initial values and external transient disturbance,
an input disturbance is added when tracking a hybrid reference with 2
and 5 Hz. The amplitudes of both the two components are set as 2 p m.
The disturbance is set as an impulse with an amplitude of —20 V, and
it occurs at 1.3 s. Furthermore, the initial values of the PEA in this case
are set as O p m, 0.5 p m and 0.8 p m individually. Results of the overall
tracking performance, the maximum error and the recovery time after
the disturbance occurrence of the proposed ANNFTC and the AFTC are
shown in Fig. 9. Quantitative comparisons among the two controllers
can be made from Table 2.

At the beginning of the tracking task, for the three initial conditions,
the convergence time of the PEA tracking error under ANNFTC ranges
from 2.6 to 2.7 ms, exhibiting close consistency. In contrast, under the
AFTC in [27], the convergence time of the tracking error varies with
different initial conditions. Furthermore, these durations are generally
longer than those of ANNFTC, except when the initial state is set to
0.8 p m, where the settling time aligns closely with that of ANNFTC.
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Fig. 9. Results of disturbance rejection for hybrid frequency sinusoidal track-
ing.

These results highlight the fixed-time convergence capability and the
advantage of rapid error convergence offered by the proposed ANNFTC.

Additionally, under the three initial conditions, the maximum track-
ing error of ANNFTC after a disturbance occurs is comparable to that
of the AFTC in [27] when the initial state is zero. However, as the
initial condition changes, the maximum tracking error of ANNFTC
following a disturbance becomes significantly smaller than that of
the AFTC, accompanied by reduced overshoot. This demonstrates the
improved motion smoothness of ANNFTC after disturbance occurrence.
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Table 2
Statistical control results under disturbance and different initial conditions.
Initial Statistical Controllers
value data AFTC in [27] ANNFTC
x(0)=0 Recovery time (ms) 0.7 0.7
Maximum transient error (pm) 0.38 0.33( 13.2%)
x(0)=0.5 Recovery time (ms) 0.7 0.7
Maximum transient error (pm) 0.85 0.34(] 60.0%)
x(0)=0.8 Recovery time (ms) 0.8 0.7
Maximum transient error (pm) 0.81 0.36(] 55.6%)

Comparing the error convergence capability of the two controllers after
a sudden transient external disturbance, the recovery times shown
in Fig. 9 indicate that the error convergence times for ANNFTC and
AFTC are largely similar for a transient disturbance. The superiority of
ANNFTC under input disturbance is primarily reflected in its smaller
overshoot following the disturbance.

6. Conclusions

To meet the rapid convergence of tracking error and precision
motion tracking of PEAs with inherent nonlinearities and unmodeled
dynamics, this paper proposes a novel adaptive neural network fixed-
time control (ANNFTC) scheme. The proposed ANNFTC integrates the
backstepping method and online neural network compensation, both
designed according to the fixed-time stability. Meanwhile, the con-
troller eliminates the need for prior knowledge of hysteresis models
or observers, which makes it easy to implement in practice. Experi-
mental results demonstrate ANNFTC’s superior tracking performance
compared to fixed-time control (FTC) and adaptive FTC (AFTC) in [27],
achieving RMSE below 0.121 p m under 10 Hz and 1-9 p m triangular
references. Meanwhile, under the transient disturbance occurrence,
the ANNFTC performs better on the maximum transient error than
the AFTC. The significance of this work lies in its dual contribu-
tion: (1) providing a theoretically guaranteed adaptive neural network
fixed-time control with a novel NN weights adaptive law for PEAs
under the existence of model uncertainties through rigorous proof via
Lyapunov analysis; and (2) offering a practical control scheme that
simplifies implementation by avoiding additional observers or complex
parameter tuning with adequate experimental validation. The proposed
ANNFTC can be directly extended to other PEA applications, such as
nanopositioning stages, microgrippers, or precision surgical devices.
Future research directions include: (1) Combining the ANNFTC with
the prescribed-time control for PEAs, and (2) Studying the practical
application of ANNFTC algorithms in PEAs under varying temperatures
and external loads.
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