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Fig.2 Mode shape function solution results
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Table 3 Actuator dynamic performance under

different damping conditions
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Abstract: The electro-hydraulic servo valve driven by piezoelectric double-chip actuators has become a key
technology to break through the performance bottleneck of traditional electromagnetic drives due to its advantages of
simple structure, fast response and high zero position stability. However, most of the existing studies focus on the
mechanical characteristics of the actuator in the air, lacking a systematic analysis on the hydrodynamic coupling effect
and hysteresis characteristics in the oil damping environment, resulting in a lack of theoretical support for the design
of the actuator in the electro-hydraulic servo valve. In this paper, a mathematical model of the piezoelectric bimorph
actuator in different oil environments, including three parts: linear dynamics, hydrodynamic force and hysteresis, is
established. The simulation study on the mathematical model is carried out to obtain its static/dynamic output
characteristics. Among them, in terms of the static output characteristics, the hysteresis is 10.8%; In terms of dynamic
output characteristics, the overshoot was 56.3% in the oil-free condition, 57.4% in the hydraulic oil environment, and
54.8% in the silicone oil environment. Meanwhile, the actuator test research was carried out. In terms of the static
output characteristics, the hysteresis is 10.5%, and the root mean square error from the hysteresis simulation results
is 2.6um. In terms of dynamic output characteristics, under different damping environments, the maximum error of the
simulation and test overprint is 3.1%, verifying the accuracy of the mathematical model. This paper solves the problem
of predicting the static/dynamic output characteristics of piezoelectric bimorph actuators in different oil environments,
and can guide the design of actuators through mathematical models.

Key Words: electrohydraulic servo valve; piezoelectric bimorph; oil environment; hydrodynamic force; hysteretic
nonlinearity; mathematical model

Received: 2025-03-14; Revised: 2025-05-23; Accepted: 2025-08-03
Foundation item: Aeronautical Science Foundation of China (20220007052001)



