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Piezoelectric displacement amplifiers (PDAs) have been widely used in precision positioning fields. However, the
inherent hysteresis and creep nonlinear effect of piezoelectric actuators (PEAs) and time-varying lumped dis-
turbances bring extreme challenges to the precise motion control of PDAs. Although various control schemes
based on PEAs have been developed and have shown significant results. However, due to the high sensitivity of
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Adaptive fixed-time convergent super-twisting precision positioning to environmental variations, the development and identification of accurate models and the
algorithm control timeliness often become obstacles in engineering. To realize precise motion control of PDAs under

complex lumped disturbances, a new time-delay control scheme (AFSTA-FONTSM) using an adaptive fixed-time
convergent super-twisting algorithm (AFSTA) and a fractional-order nonsingular terminal sliding mode
(FONTSM) is proposed. Specifically, the time-delay information obtained by time-delay estimation technology is
used to estimate the lumped dynamic characteristic of the system, thus establishing a simple control framework
without a system dynamic model. FONSTM is constructed as a sliding mode manifold, and satisfactory error
dynamic characteristic is obtained. A new AFSTA is designed as the reaching law in the sliding mode phase.
AFSTA has fixed-time convergence when the upper bound of lumped disturbances exists, which ensures the
control timeliness. Benefiting from the newly designed adaptive algorithm, the upper bound value of lumped
disturbances is no longer needed to determine the control gains, which effectively prevents overestimation of the
control gains. Correspondingly, the convergence time of AFSTA is estimated, and the stability of the closed-loop
system is analyzed by the Lyapunov theory. Three existing time-delay control schemes, namely MSTA-FONTSM,
AMSTA-FONTSM, and ASTA-FONTSM are selected, and four scenes are designed for comparative experiments.
The experimental results show that MSTA-FONTSM has the worst control performance among the four control
schemes. For the step, and continuous cosine trajectories with periods of T =1 s and T = 2 s, the root-mean-
square error of the proposed AFSTA-FONTSM is reduced by 56.86%, 54.03%, and 50.24% compared with
MSTA-FONTSM. For disturbance experiments under different loads, the control performance of the proposed
AFSTA-FONTSM is still superior to the other three control schemes without load.

1. Introduction

Piezoelectric actuators (PEAs) have attracted much attention for
their unique performance. They are becoming more fascinating for the
precise positioning field due to their high resolution, high stiffness, high
electromechanical coupling efficiency, and fast response, such as micro/
nano stage [1,2], atomic force microscopy [3], vibration isolation
platform [4], and so on. However, the motion range of PEAs is limited,
and the piezoelectric displacement amplifiers (PDAs) are usually
designed to increase the motion range of PEAs in practical engineering.

* Corresponding authors.

One of the most typical applications is to replace the staff with a PDA to
automatically complete the cell micromanipulation tasks, including
puncture, injection, nuclear transplantation, and so on. In [5-7], the
researchers designed different PDAs and controlled them to complete
the cell puncture task. The diameter of a typical single cell is usually 10
to 500 um [8]. Therefore, precise control is crucial for PDAs. However, it
is challenging work to design a high-performance controller for PDAs
used in the micromanipulation tasks. The main obstacles include the
following three aspects: (1). PEAs exhibit inherent hysteresis and creep
nonlinear effect, and time-varying lumped disturbances, which makes it
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very difficult to establish an accurate system model [9]; (2). Due to (1),
the performance of PEAs is limited, and the positioning accuracy will be
seriously deteriorated, thus affecting control accuracy [10]; (3).
Micromanipulation tasks are extremely sensitive to lumped distur-
bances, and some parameters of the whole system often change unex-
pectedly [11]. The controller should have the rapid convergent ability in
the face of disturbances to ensure control timeliness.

To overcome these obstacles, many researchers have made efforts
and several control schemes have been proposed for piezoelectric-driven
mechanical systems, such as feedforward control [12,13], sliding mode
control (SMC) [11,14], model predictive control [15], iterative learning
control [1,16], and so on. As one of the most effective methods to deal
with lumped disturbances, SMC and its variants have also been widely
used in many fields. Their core content is to force the system state
variables to reach the preplanned sliding mode manifold and to limit
and remain on the sliding mode manifold as much as possible to ensure
robustness. To further improve the local convergence characteristic of
SMC, researchers have developed terminal sliding mode (TSM) [17],
nonsingular TSM (NTSM) [18], and fractional-order NTSM (FONTSM)
[5] respectively, and achieved satisfactory results. The above methods
usually use switching elements to ensure that the system state variables
reach the sliding mode manifold. Because the upper bound value of
lumped disturbances is difficult to acquire in engineering, the large
control gain is often applied to switching elements, which will lead to
the well-known chattering phenomenon [19]. Researchers have pro-
posed many methods to reduce chattering, such as upper bound layer
[20], reaching law [5], adaptive law [21], high-order SMC (HOSMC)
[22,23], and so on. Compared with other methods, HOSMC is more
popular because of its good comprehensive performance.

As one of the most powerful second-order continuous HOSMC al-
gorithms, the super-twisting algorithm (STA) has become a research
hotspot in many fields, such as power networks [24], electromagnetic
direct-drive pump [25], magnetic levitation systems [26], and so on. It
hides the switching elements behind an integrator [27], which can
significantly reduce chattering without losing robustness [26]. Howev-
er, the dominant term of STA is square root convergence, which will lead
to a slow system response [28]. To improve the convergence speed of
STA, researchers have proposed several modified STA (MSTA). The most
classic modified algorithm is to add linear feedback terms to STA [29,
30], and the convergence speed is improved, but it also leads to unde-
sired overshoot. A new MSTA with double closed-loop feedback is pro-
posed from [31]. This MSTA adds a proportional and a damping factor to
the differential and the integral term of the sliding mode variable, which
improves the convergence speed and reduces overshoot. It is worth
noting that the above STA and MSTA have been proven to be finite-time
convergence. The convergence time is related to the initial value. For
instance, micromanipulation tasks are extremely precise, and any dis-
turbances may affect the accuracy of the operation. When the system
suffers from large disturbances, it may significantly deviate from the
desired trajectory, resulting in large initial tracking errors. For a larger
initial value, the convergence time will be longer, which leads to the
control timeliness not being guaranteed. Therefore, it is a problem
worthy of attention to design a fixed-time convergent STA (FSTA) and
apply it to micromanipulation tasks.

A FSTA presented in [32] contains too many interrelated control
items, which makes the system more complicated. Basin et al. [33-35]
have made a series of profound studies on the FSTA and estimated the
convergence time. Although the above research has achieved gratifying
results, they still need identification methods to obtain the system dy-
namics model, which may not be suitable for micromanipulation tasks
under complex lumped disturbances.

The time-delay estimation (TDE) technology is an intuitive, efficient,
and powerful tool to settle the above problems. The system dynamics
can be effectively obtained only by using the time-delay information of
the system state, and a simple framework is realized. Because of the
above advantages, TDE technology has been broadly used in many
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fields, such as robot manipulator [36], exoskeleton [37], and so on.
Meanwhile, the time-delay errors caused by TDE usually require a robust
control strategy to further improve the control accuracy. Recently, a
control scheme combining MSTA and TDE has been developed for the
cable-driven manipulator [38]. In this scheme, the robust control
strategy adopts FONTSM with better performance and achieves satis-
factory results. However, the constant control parameters need to be
calculated by the upper bound value of lumped disturbances [39], which
is difficult to obtain in engineering. When the disturbances change
obviously, using fixed gains may lead to poor control performance.

Inspired by the above essential issues, we propose a new time-delay
control scheme with an adaptive FSTA (AFSTA) and a FONTSM (AFSTA-
FONTSM). Firstly, the control framework without a system dynamic
model is established using TDE to estimate the lumped dynamic char-
acteristic. Next, based on the TDE control framework, the control
scheme is developed with FONTSM and AFSTA as sliding manifold and
reaching law, respectively, and a new adaptive algorithm is designed.
Then, the convergence time of AFSTA is estimated in detail, and the
stability of the closed-loop system is analyzed by the Lyapunov theory.
Finally, the reliability and superiority of the proposed control scheme
are verified by comparative experiments in different scenes.

To be specific, the main contributions of this paper are as follows:

1) to propose a new time-delay control scheme with AFSTA-FONTSM.
TDE technology is applied to establish a simple control framework
without a system dynamics model. FONTSM is used as the sliding
mode manifold to obtain a more satisfactory error dynamic charac-
teristic. A new AFSTA is proposed as the reaching law. Being
different from the existing finite-time convergent MSTA [38],
AMSTA [40], and ASTA [41], when the disturbances are bounded,
AFSTA ensures control timeliness with fixed-time convergence.
Therefore, it has a faster convergence speed in the sliding mode
phase.
to propose a new adaptive algorithm. The adaptive algorithm can
generate appropriate control gains. Its advantage is that it no longer
requires the upper bound value of the lumped disturbances to
determine the control gains, which effectively prevents the over-
estimation of the control gains.
3) to estimate the convergence time of AFSTA and give the stability
proof of the closed-loop system using the Lyapunov theory.
4) to verify the reliability and superiority of the proposed AFSTA-
FONTSM compared with the existing control schemes by compara-
tive experiments in four scenes.

2

—

The rest of this paper is organized as follows: In Section 2, the new
control scheme and adaptive algorithm are designed and discussed.
Comparative simulations are performed in Section 3. Comparative ex-
periments are carried out in Section 4. A conclusion is presented in
Section 5. The nomenclature list, detailed convergence time estimation,
and stability proof are given in the Appendix.

2. Control scheme
2.1. System dynamics model

Fig. 1 shows a PDA device made of aluminum alloy 7075, which is
machined by electric discharge machining. It is composed of leaf flexure
hinges and is driven by a PEA. The system can be equivalent to a second-
order dynamic model with a hysteresis effect, which can be described as
[5]:

mx +cx+kx = T, (u—h) —f, (¢}
where m,c, and k represent mass, damping coefficient, and stiffness co-

efficient; x,x, andxare acceleration, velocity, and displacement; Tenis the
conversion coefficient; u is the input voltage; h is the hysteresis term; f,
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Fig. 1. Dynamic system of PDA.

are other unmodeled disturbances.
According to Eq. (1), the control input can be expressed as:

u="T,} (mi+cit+ket+f,)+h )
Because it is difficult to obtain T,, in practical engineering, we

introduce a nominal value Tem and Eq. (2) can be rewritten as:
u=T, mi+H (3)
where:
H =T, (ci+ke+f,) +h+ (T, — T, )ms

Note that H includes dynamic parameters, the hysteresis nonlinear
effect of PEA, and the other unmodeled disturbances. They can all be
regarded as lumped disturbances. His bounded and ‘H‘ <. We can

clearly observe that it is difficult to obtain an accurate model. Therefore,
we try to propose a new control scheme without a system dynamics
model to realize the accurate trajectory tracking of PDA.

2.2. TDE Framework

Aiming at the above difficulties, we propose a control framework
without a system dynamic model using TDE. Specifically, the mathe-
matical expression is as follows:

ﬁ = H (1—A4r1) (4)

where At is delayed time. The lumped disturbances are directly esti-
mated by Hi_4.

In engineering, the scheme can be efficient when At is selected very
small [39]. We denote T;ni m as M. Substituting Eq. (4) into Eq. (3), we
can obtain:

H = U—ar) — Mjc.(r—Ar) %)

where u;_yy) is easily obtained by the delay value of u. But X(,_,; can’t be
obtained by actual observation. Therefore, numerical differentiation is
usually used as follows [38]:

X — 2X(1—ar) + X(—2a1) > 241
Xy = AP (6)
0r < 24t

The approximate errors of Eq. (6) are directly proportional to O(At?).

In engineering, At usually selects a small value. Therefore, the errors can
be ignored. Numerical differentiation will amplify noise, which can be
settled by setting a smallerMand adding a low-pass filter.

2.3. Proposed AFSTA-FONTSM scheme

To obtain more superior dynamic characteristic, we apply the
FONTSM manifold as follows [38]:

s = é+a;D"[sig(e)”] + D™ [sig(e)?] @

where a1,a2,41,12,01,02 are positive parameters, and satisfy the
following condition: 0 < 41,13,01,02 < l.e = x4 — x € R, x4 is desired
trajectory, andxis actual trajectory. sig(x)’ = |x’sign(x) € R,
D*(y)represent fractional-order operator.

The above FONTSM manifold has been verified to effectively ensure
higher control accuracy and faster convergence speed. To suppress
control chattering and achieve fixed-time convergence in the sliding
mode phase, FSTA is used as the reaching law to ensure control timeli-
ness [33,34]:

§ = —ky|s|'sign(s) — ky|s|"sign(s) + @, s(to) = so
ks ®)
» = —imgn(s) + o, 0(ty) = 0o
wherek;,kz, ks > Oandp > 1. gsatisfy Lipschitz disturbances.

To estimate the convergence time of FSTA, we will make the
following definitions:

Definition 2.1. Vs, € R,3T(so), such that (s(t) € R) = 0, and it is also
satisfied for all t > T, at which the STA is regarded as finite-time
convergence to the origin.

Definition 2.2. Vs € R, 3T(explicitly indicated), such that (s(t) € R)
=0, and it is also satisfied for all t > T, at which the STA is regarded as
fixed-time convergence to the origin.

Definition 2.3. Vso € R, dT(explicitly indicated), such that
(s(t) € R) € (SCR), and it is also satisfied for all t > T, at which the STA
is regarded as fixed-time convergence to the neighborhoodSof the
origin.

If the disturbance is bounded, Eq. (8) converges to the neighborhood
of the origin in fixed-time.

Proof. The upper bound estimation of convergence time is given in the
Appendix B.
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As mentioned in [39], constant gains k; and k3 are used. However, it
is necessary to know the upper bound value of lumped disturbances
when determining k; and k3. Due to the upper bound value of lumped
disturbances being difficult to obtain in engineering, the constant value
may overestimate the control gains, thus increasing the chattering of the
system.

To settle this problem, we proposed a new adaptive algorithm. When
the control performance becomes worse, the gains should be increased
to obtain higher convergence accuracy and faster response. On the
contrary, it should be decreased rapidly to ensure stable performance
and suppress noise effects. Specifically, the adaptive algorithm is as
follows:

n—lsign(|s| —u)ifﬁl > kyorls| > u
h={V2 ©)
0ifk; < kyand|s| < p

k3

2ek, + 28](28(1”71/2) (10)

where ¢,¢1,1,,pare arbitrary positive parameters. knis the lower bound
Ofi(\l .
In addition, if |so| > u, Elneeds to satisfy the following conditions:

(—4—4e —2L)

% — M — (4L + e
8eA(1 — 8)

D))

(€8]

whered, 4, € are arbitrary positive constants, and 0 < 6 < 1.
The upper bound estimation of convergence time can be given by the
following Theorem.

Theorem 2.1. Consider Eq. (8) exist a disturbance upper bound L,
Vso € R, 3u > 0, such that s(t) converge to the neighborhood of the
origin in fixed-time.

J’__

1 2
Tf' < —1
T k-1’ p

M?
A+4)ey + ——————
( ) 1 k%(p_l)ZE?(p—l)

(12)

1/2
—4ee, I/ZLI
ka(p — 1)

where 1 > pu.

M 1 p—1/2
M=¢| b | tekd L
(ﬁkz(P—l)ff ]> o

Proof. The detailed proof of Theorem 2.1 is given in the Appendix B.

Remark 2.1. Note that the applicable condition of Theorem 2.1 is that
Eq. (11) is satisfied when to > 0. If Eq. (11) is not satisfied at t = 0, the

adaptive gain El will be increased based on Eq. (9) until Eq. (11) is
satisfied at ty. to can be estimated as:

(—i—4e—2L) -~

V2 =™ — (4L + 1)e
TR 13)

to < —
o A1 -96)
Because L exists, t, can be estimated. Otherwise, Eq. (11) will be
satisfied in some finite-time, which exists but is unknown.
Combining Eq. (3), Eq. (5), Egs. (7-10), a new AFSTA-FONTSM
control scheme is proposed as follows:

u=Mi+H a4

Therefore, the final control law can be expressed as follows:
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u=M(%; + ay D" [sig(e)”] + ay D [sig(e)™]

~ k
+%,1|s|"*sign(s) + ky|s|"sign(s) + f/sign(y)) (15)
‘H't(l—m) - Mx'(wm)

The block diagram of the time-delay control scheme based on
AFSTA-FONTSM is shown in Fig. 2.

Remark 2.2. To obtain the relatively satisfactory control parameters
of the proposed control scheme, the following adjustment processes are
adopted:

Step (1) Letoy =00 =1 =ax = 1, El = k2 = i(\3 =0. ﬂ.l andlg
applies the data from [38,40]. Mstarts from a small value and increases
in turn until the control performance deteriorates. An adjustment pro-
cess similar toMcan be used to determinea; andas;.

Step (2): Keep El =ky = i(\3 =0, 61,00decrease from 1 in turn, and
observe the control performance;.

Step (3): Keep ky = ks =0, set an appropriate k, according to the
control performance. 7, increases from 0 in turn and y decreases from a
large value to a small value, while observing the control performance. ko
is effectively determined by the same adjustment process asy; .

Step (4): ¢ increases from 0 in turn until the control performance is
observed to deteriorate. &; and p can be determined by the same
adjustment process ase.

Through the above processes, the control parameters can be
adjusted. If the control performance does not meet the standards, the
above processes should be repeated.

2.4. Discussion of proposed control scheme

(1) Discussion with the existing MSTA-FONTSM control scheme.

The proposed AFSTA-FONTSM is compared with the recently pro-
posed control scheme from [38], namely MSTA-FONTSM. The control
law of MSTA-FONTSM is rewritten as follows:

u=M(%; + o, D" [sig(e)™'] + D" [sig(e)]
+hky|s|'*sign(s) + kos + k3 / sign(s)dr + k, / sdt) 16)
‘Hl(t—Az) - Mi(z—m)

Compared with MSTA-FONTSM, the proposed AFSTA-FONTSM has
the following two advantages:

2.5. Control timeliness

Both control schemes adopt FONTSM error dynamics and have been
proven to have faster response speed and higher accuracy than linear
error dynamics. However, MSTA is finite-time convergence, and the
convergence time is related to the initial value. Therefore, for a large
initial value, the convergence time may also become longer and the
control timeliness will become worse. The proposed AFSTA-FONTSM
can ideally ensure control timeliness.

2.6. Flexibility of parameters

MSTA-FONTSM needs to obtain the upper bound value of lumped
disturbances to determine the control gains. This work can be extremely
difficult. The constant control parameters may overestimate the control
gains, thus leading to chattering and affecting control accuracy.
Compared with MSTA-FONTSM, the proposed AFSTA-FONTSM enjoys
good parameter flexibility and no longer needs the upper bound value of
lumped disturbances.

(2) Discussion with the existing AMSTA/ASTA-FONTSM control
schemes.

The proposed AFSTA-FONTSM is compared with the recently pro-
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FONTSM

Sensor

Fig. 2. Control scheme block diagram.

posed adaptive control scheme from [40,41], referred to as
AMSTA-FONTSM and ASTA-FONTSM respectively. The control law of
AMSTA-FONTSM can be given as [40]:

u =M%+ ayD"*'[sig(e)”] + ax D" [sig(e)™]
o |s|sign(s) + kos + ﬁ(s)sign(s)) an
+u(1—At) - A_’[f(pm)

The adaptive gain p can be express as [40]:

B = Ol — 900D, = st (/) as)

where 9, ¢, v are positive parameters, andp,, is the upper bound
value of the adaptive gainp; sat((])is the saturation function.
The control law of ASTA-FONTSM can be given as [41]:

u=M (% + o, D" [sig(e)”'] + ax D" [sig(e) ]
+% |s|"*sign(s) + Eﬁign(s)) 19
Fu(-ar — Mx‘(z—m)

The adaptive gain k. and k, can be express as [41]:

- ~0,,itk; > ky max
ki =4 05,k mn < Ky < Kt mas |s] < 4 (20)
01, ifk; < ki minOTk min < ki < Ky max, S| > A

ky = 63k, 21

where 6,,02,03,Aare positive parameters; ki pm,and kq p.xrepresent the

minimum and maximum values of El. 6, and 0ystand for different speed
parameters.

The proposed AFSTA-FONTSM is compared with AMSTA/ASTA-
FONTSM in the following two aspects:

1) Control timeliness
AMSTA and ASTA have also been proven to be finite-time
convergence from [40] and [41] respectively. As previously
analyzed, the control timeliness of the two algorithms is worse than
the proposed AFSTA.
2) Adaptive algorithm

The saturation function is used in the adaptive algorithm of AMSTA,
which may cause chattering and even destroy the hardware system. To
suppress chattering, bound layer technology is selected, which will lead
to the loss of stability in finite-time convergence and a decrease in
control performance [42]. In addition, the adaptive algorithm of AMSTA
is a low-pass-filter-like structure. Hence, it can’t reflect the control
system accurately and in real-time, which may lead to overestimation of
the control gains and deterioration of the control performance. On the

contrary, the adaptive algorithm of AFSTA has a principle similar to Eq.
(20). The advantage can not only ensure timeliness but also reflect the
control performance accurately and in real-time without overestimating
the gains.

The above discussions will be verified by the following simulations
and experiments.

3. Simulation demonstration
3.1. Simulation setup

We compare the two kinds of MSTA and STA used in [38], [40] and
[41] with FSTA. The specific forms are summarized in the following
Table 1.

We designed the following two simulation scenes. Scene one: the
simulation is run with a small initial value s, = 10,0y = Oand distur-
bance ¢ = 3sin(t), so that L = 3. Scene two: the disturbance is un-
changed, and the large initial value so = 200 and wy = 0 are performed
to further analyze the influence of the initial value on the convergence
results. The sampling time of the system simulation is set to 0.1 ms. The
gains of FSTA are selected ask; =10,ks =10,ks =10,p =1.5. For the
sake of fairness, the four algorithms should ensure that the gains of the
corresponding positions are consistent. Specially, k4 = 1.

3.2. Result and discussion

The simulation time of scene one is set to 2s, and the simulation
results are shown in Fig. 3.

As depicted in Fig. 3, the sliding mode variable s of four algorithms
can converge to the neighborhood of the origin. Under the disturbance,
the slight fluctuation of intermediate variable w will not affect the
convergence accuracy of s. The convergence time of the four algorithms
is TSTA = 0.70068, TMSTAl = 0.29615, TMSTAZ = 0.36038, and TFSTA =
0.2549s, respectively. FSTA can provide the fastest convergence speed
under the same gains.

Table 1
Specific Forms of Algorithm.

Reference Name Algorithm Form
[41] STA $ = —ki|s|"/?sign(s) +
@ = —kysign(s) + ¢
[40] MSTA1 s=—k1 \s\”zsign(s) —kas+ o
@ = —kssign(s) + ¢
[38] MSTA2 § = —ki|s|"/sign(s) — kos + @
@ = —kssign(s) — kas+ ¢
(33,34] FSTA § = —kuls[ ?sign(s) — kalsPsign(s) + o

k
W= —fsign(s) +o
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Fig. 3. Simulation results of scene one. (a) Sliding mode variable s; (b) Inter-
mediate variable w.

The simulation time of scene two is set to 10 s, and the simulation
results are shown in Fig. 4.

Fig. 4 shows that the sliding mode variable s of the four algorithms
can still converge to the neighborhood of the origin, completely. The
convergence time is TSTA = 5-321753TMSTA1 = 0.50685,TMSTA2 =
4.5556s and Trsta = 0.3108s, respectively. The increase percentage of
convergence time is Pgya = 659.59%, Puysta1 = 71.16%,Pystaz =
1164.39% and Prsts = 21.93%, respectively. STA, MSTA1, and MSTA2
belong to finite-time convergence. MSTA1 and MSTA2 add closed-loop
feedback terms, which effectively improve the convergence speed.
However, the convergence time whose upper estimate is still related to
the initial value. Therefore, the three algorithms are greatly influenced
by the initial value. For a large initial value, FSTA still has a strong

200 T T
| @
150+ ‘\ .
\ — — STA
L1004 — - — MSTAI|
18 - .= MSTA2
50-‘\ AN ——FSTA | |
\\
O_ Y
0 2 10
olw ' ®
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_1()_li 2N ! FSTA
-154 T—a i
'.\ ./
. 6.00 6.01 6.02 6.03 6.04 6.05
20 . : : j
0 2 4 6 8 10

Time(s)

Fig. 4. Simulation results of scene two. (a) Sliding mode variable s; (b) Inter-
mediate variable o.
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advantage in convergence speed.

To conclude, the simulation results demonstrated that FSTA is su-
perior to the existing super-twisting-like algorithms. When the distur-
bance is bounded, the upper bound estimation of the convergence time
of FSTA is independent of the initial value. It has a faster convergence
speed and can ensure control timeliness.

4. Experimental demonstration
4.1. Experimental setup

The experiments take a PDA as plant (see Fig. 5).

The experimental system is briefly described as follows. The control
signal of PEA is provided by a voltage amplifier. The displacement is
measured by a laser sensor in real-time. The signal needs to be pre-
processed by the signal conditioner and collected by the analog-to-
digital converter channel of the data acquisition card. A digital-to-
analog converter channel outputs a control signal, which is passed
through a voltage amplifier. The control program is developed in
MATLAB/Simulink of the host personal computer and downloaded to
the target computer by TCP/IP after the program is compiled. The
sampling frequency of the system is set to 10 kHz. The experimental
instruments are depicted in Fig. 6.

We perform experiments to compare the above four control schemes.
The parameters of FONTSM andMare selected as follows: i; = 0.01,4; =
0.99,61 =062 = 0.95,0; = az = 1, M = 0.004. The delayed time At is
set to 0.1 ms. The parameters of the proposed AFSTA-FONTSM (see Eqs.
(9, 10, 15)) are as follows: k, = 190, ko = 0.1p = 15u =
0.00025,¢; = 0.1,6 = 0.006,7; = 30. To ensure fairness, the setting of
other parameters should be the same as the proposed AFSTA-FONTSM.
To be specific, the parameters of MSTA-FONTSM (see Eq. (16)) are
selected as follows: k; = 190,k; = 0.1,ks = 0.15,k4 = 5; The parame-
ters of AMSTA-FONTSM (see Eq. (17-18)) are selected as follows: k; =
190,k; =0.1,9 =100, ¢ = 0.1,0 = 20,p,,,, = 200; The parameters of
ASTA-FONTSM (see Egs. (19-21)) are selected as follows: kj i, = 190,
k1 max = 220,4 = 0.00025,0; = 25,0, = 50,03 = 0.012.

To demonstrate the reliability and superiority of the proposed
AFSTA-FONTSM, four experimental scenes are designed as follows.
Scene one: We use the above four schemes to control PDA to track a step
trajectory and to evaluate the dynamic response of the system. Scene
two: The above four schemes are also used to control PDA to track a slow
cosine trajectory with a period of T =2s without load. Then, the
tracking abilities of the four control schemes for a continuous trajectory
are compared and analyzed. Scene three: A relatively fast cosine tra-
jectory (T =1 s) is tracked to further compare the control performance
of the four schemes. Scene four: The constant load and monotonically
increasing load are exerted on PDA respectively to confirm the robust-
ness of the proposed AFSTA-FONTSM to lumped disturbances. The
robustness of the proposed AFSTA-FONTSM can be verified by
comparing the control performance with load and without load.

4.2. Result and discussion

(1) Analysis results of scene one: We control PDA to track a step tra-
jectory with an amplitude of 100 um. The experimental results of scene
one are shown in Fig. 7.

As depicted in Fig. 7, the four control schemes can realize step tra-
jectory tracking. It can be intuitively observed that the best tracking
performance can be obtained by using the proposed AFSTA-FONTSM
because the tracking errors are always smaller than other control
schemes. To quantitatively evaluate the dynamic response of the system,

the rise time (Tr) and root-mean-square error (RMSE)= 1/} e?/N
within a 1% errors range are taken as performance indicators. The
analysis results are listed in Table 2.

From Table 2, the proposed AFSTA-FONTSM has the fastest rise time
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Fig. 7. Experimental results of scene one. (a) Trajectory tracking; (b) Tracking errors.

and the smallest RMSE, which is 1.8736 s and 0.3248 um. The control
performance of MSTA-FONTSM is the worst. Compared with MSTA-
FONTSM, the rise time result of AMSTA-FONTSM, ASTA-FONTSM,

Table 2
Analysis results of performance indicators of step trajectory.

Signal  Indicator  Control Scheme and AFSTA-FONTSM is reduced by 3.78%, 4.12%, and 8.15%, respec-
MSTA- AMSTA- ASTA- AFSTA- tively. For RMSE, the result of AMSTA-FONTSM, ASTA-FONTSM, and
FONTSM FONTSM FONTSM FONTSM AFSTA-FONTSM is reduced by 23.84%, 41.09%, and 56.86%, respec-
Step Tr(s) 2.0399 1.9628 1.9558 1.8736 tively. The analysis results show that the proposed AFSTA-FONTSM has
RMSE 0.7529 0.5734 0.4435 0.3248 a better dynamic response than the other three control schemes.
(pm) (2) Analysis results of scene two: The desired trajectory is defined as
Xxg =50 — 50 cos(2xt). The experimental results of scene two are shown
in Fig. 8.

As depicted in Fig. 8, the four control schemes have achieved



Z. Song et al. ISA Transactions xxx (Xxxx) xxx
120,
(a)
100/
ER _
g £
£ 60| >
g E
< f=
o 40] =
2
20/
0f
0 I 2 3 4
Time(s)
196 T - . T T 1.2 T T T T T
——ASTAk, ——AFSTA &, ©
195+ 1.0
1944 0.8+
= 1931 a 0.61
192 0.4
191+ 024
190 -t/ _ - 0.0 ——AMSTA_p |
0 ! 23 0 ! 2 3 4 5 6
Time(s) Time(s)
— — Desired — - — MSTA-FONTSM — - - = AMSTA-FONTSM - - - - ASTA-FONTSM AFSTA-FONTSM
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p =7

satisfactory control effects. The results verify that TDE technology,
FONTSM error dynamics, and MSTA/AMSTA/ASTA/AFSTA control
scheme can effectively realize the without a system dynamic model
control of PDA with the hysteresis effect. It can be clearly that the
proposed AFSTA-FONTSM has the smallest tracking errors among the
four control schemes. For quantitative analysis, the following perfor-
mance indicators are defined as: the RMSE, the absolute average error
(AAE) = YV, ei|/N, the maximum error (MAX)= MAX SV |e;|. The
corresponding analysis results are given in Fig. 9.

In Fig. 9, control schemes 1, 2, 3, and 4 represent MSTA-FONTSM,
AMSTA-FONTSM, ASTA-FONTSM, and AFSTA-FONTSM. The control
performances of the three adaptive schemes are better than MSTA-
FONTSM. Compared with MSTA-FONTSM, the RMSE result of
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Fig. 9. Control performance of scene two.

AMSTA-FONTSM, ASTA-FONTSM, and AFSTA-FONTSM is reduced by
25.21%, 37.18%, and 54.03%, respectively. For AAE, the result of
AMSTA-FONTSM, ASTA-FONTSM, and AFSTA-FONTSM is reduced by
25.30%, 37.07%, and 54.62%, respectively. The MAX result of AMSTA-
FONTSM, ASTA-FONTSM, and AFSTA-FONTSM is reduced by 17.20%,
36.72%, and 49.33%, respectively.

It can be clarified that the proposed AFSTA-FONTSM can ensure high
control accuracy and has the best control performance among the four
control schemes. We further compare the adaptive algorithms as shown
in Fig. 8(c) and (d). The proposed adaptive algorithm (see Eq. (9)) can
update the control gains quickly and accurately according to real-time
control performance. When the control performance tends to decrease,
the adaptive gains are increased. On the contrary, they will quickly
decrease to the lower bound value to guarantee a smooth control effect.
Although the adaptive algorithm (see Eq. (20)) of ASTA-FONTSM can
also realize the above updating process. Due to the performance of STA
being worse than that of FSTA, the tracking errors are larger than that of
AFSTA-FONTSM, which leads to larger control gains. In addition, the
adaptive algorithm (see Eq. (18)) of AMSTA-FONTSM can also increase
the control gains when the control performance deteriorates. However,
there is still a non-zero gain of time-varying noise when the control
performance is relatively perfect. This phenomenon is caused by the
low-pass-filter structure, which may bring large noise control and per-
formance deterioration even though the performance of MSTA is better
than STA. Therefore, the proposed adaptive algorithm can obtain more
satisfactory comprehensive performance compared with the existing
ones. The above analysis results convincingly demonstrate the reliability
and superiority of the proposed AFSTA-FONTSM, and this control
scheme has high control accuracy.

(3) Analysis results of scene three: A relatively fast cosine trajectory
(T =1 5s) is defined to further demonstrate trajectory tracking perfor-
mance. The experimental results are shown in Fig. 10.

As shown in Fig. 10, the four control schemes can still have relatively
satisfactory tracking effects. When the errors of the four control schemes
slightly increase, the proposed AFSTA-FONTSM still has the smallest
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Fig. 10. Experimental results of scene three. (a) Trajectory tracking; (b) Tracking errors; (c) Adaptive gains of ASTA and AFSTA, k; = k1; (d) Adaptive gain of

AMSTA, p = p.

tracking errors. The above performance indicators continue to be used
for analysis, and the corresponding results of scene three are shown in
Fig. 11.

We can observe that the analysis results similar to that of Fig. 9 are
given in Fig. 11. When tracking the relatively fast cosine trajectory, the
control performance of the four control schemes decreases slightly.
Therefore, the gains of the three adaptive algorithms are also increased
compared with scene one. Nevertheless, the proposed adaptive algo-
rithm can still ensure that AFSTA-FONTSM has the best comprehensive
control performance. The results once again show that the proposed
AFSTA-FONTSM has obvious advantages over the existing three control
schemes.

(4) Analysis results of scene four: The mass of PDA is 0.096 kg. A load
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Fig. 11. Control performance of scene three.

of 0.02 kg is exerted on the end of PDA. The desired trajectory is still a
relatively fast (T =1 s) cosine trajectory. Then, a low-density sponge
with an initial weight of 0.0042 kg is added to the end of PDA while
maintaining the desired trajectory unchanged. A peristaltic pump with
1.865 mL/s of constant flow is used to continuously inject water into the
sponge. The control time is 4s, which ensures the monotonically
increasing disturbances from 0.042 kg to 0.012 kg. The experimental
results of scene four are shown in Fig. 12. The corresponding control
performance results are shown in Fig. 13.

As depicted in Fig. 12 and Fig. 13, the proposed AFSTA-FONTSM can
still ensure satisfactory control performance under constant load and
monotonically increasing load. The results strongly verify the robustness
of the proposed AFSTA-FONTSM to lumped disturbances. Under the
constant load, RMSE is increased by 10.94%, AAE is increased by
10.02%, and MAX is increased by 19.91% compared with scene three
(without load). Under monotonically increasing load, RMSE is increased
by 6.97%, AAE is increased by 4.74%, and MAX is increased by 10.25%
compared with scene three.

In the case of load, the amplitude of RMSE and AAE is relatively
small, while MAX increases relatively large, which is mainly affected by
the proposed adaptive algorithm. When the tracking errors tend to
decrease, the adaptive gains also decrease, which makes the amplitude
of RMSE and AAE slightly increase. On the contrary, the adaptive gains
speedily increase to suppress the tracking errors leading to the ampli-
tude of MAX increases relatively large. The results demonstrate that the
proposed adaptive algorithm can still effectively ensure control accu-
racy with lumped disturbances. In addition, the control performance of
the proposed AFSTA-FONTSM under load is still better than the other
three control schemes without load, which further shows the superiority
of the proposed control scheme in robustness and control accuracy.

To conclude, the experimental results of the proposed AFSTA-
FONTSM in the above four different scenes show satisfactory compre-
hensive control performance, which strongly demonstrates reliability
and superiority compared with the existing three control schemes.
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5. Conclusion

To realize better control performance of PDA under complex lumped
disturbances, this paper proposed a new time-delay control scheme using
AFSTA and FONTSM. Firstly, TDE to estimate the lumped dynamic char-
acteristic and a control framework without a system dynamic model is
established. Next, the error dynamic characteristic with better perfor-
mance is obtained by constructing the FONSTM manifold. Furthermore, a
new AFSTA is proposed as the reaching law in the sliding mode phase.
AFSTA has fixed-time convergence when the lumped disturbances are
bounded, and the convergence time is independent of the initial value,
which effectively ensures control timeliness. Meanwhile, the newly
designed adaptive algorithm ensures that control gains no longer need the
upper bound value of lumped disturbances, and will not lead to over-
estimation of control gains. Then, the convergence time of AFSTA is esti-
mated and the stability of the closed-loop system is proved by the
Lyapunov theory. Finally, we designed four scenes and performed
comparative experiments with the recently proposed MSTA-FONTSM,

10

AMSTA-FONTSM, and ASTA-FONTSM control schemes, verifying the
reliability and superiority of the proposed AFSTA-FONTSM. For the step
trajectory in scene one, the rise time and RMSE of the proposed AFSTA-
FONTSM is 1.8736 s and 0.3248 um respectively, which have better dy-
namic response than the other three control schemes. For the continuous
cosine trajectory with a period of T = 2 s in scene two, RMSE, AAE, MAX
are reduced by 54.03%, 54.62%, and 49.33% respectively compared with
MSTA-FONTSM, which has the worst performance among the three con-
trol schemes. For the cosine trajectory (T = 1 s) in scene three, the control
performance of the proposed AFSTA-FONTSM is still superior to the other
three control schemes. For the constant load and monotonically increasing
load in scene four, the proposed AFSTA-FONTSM can still ensure high
control accuracy, even better than the other three control schemes without
load. The experimental results show that the proposed AFSTA-FONTSM
has the best comprehensive control performance and robustness.

It is worth noting that the TDE technique has an excellent effect on
continuous nonlinear disturbances, such as gravity, Coriolis force, and
so on. However, it is not perfect for discontinuous nonlinear distur-
bances, such as friction, mechanism clearance, and so on. This is also the
limitation of the proposed work. But for PDA, the structure design
adopts a flexible mechanism. Its advantage is that there is no friction and
mechanism clearance, which fundamentally reduces other unmodeled
disturbances. In future work, we will try to study the influence of
discontinuous disturbances on TDE and compensate for TDE errors
caused by discontinuous disturbances.
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Appendix A

Nomenclature

piezoelectric displacement amplifier
piezoelectric actuator
sliding mode control
high-order SMC
super-twisting algorithm
adaptive STA
modified STA
adaptive MSTA
fixed-time convergent STA
adaptive fixed-time convergent super-twisting algorithm
fractional-order nonsingular terminal sliding mode
time-delay estimation
terminal sliding mode
nonsingular TSM
rise time
root-mean-square error
absolute average error
maximum error

PDA
PEA
SMC
HOSMC
STA
ASTA
MSTA
AMSTA
FSTA
AFSTA
FONTSM
TDE
TSM
NTSM
Tr
RMSE
AAE
MAX

Appendix B

Before stability analysis, the following Lemma is introduced.
Lemma [Lemma 2.1(a) of [43]]: The fractional integral operators Ij, and I{_ with R(a) > 0 are bounded in Ly(b,c),1 < g < co:

75,51, < Ulyll,»

where I'(-) is the Gamma function.

¢ —b)f@
ﬁyugwn(U—L—l—

R(a)|I'(a)]

ISA Transactions xxx (Xxxx) xxx

(22)

The proposed AFSTA-FONTSM control scheme (Eq. (15)) and adaptive algorithm (Egs. (9, 10)) can be substituted into Eq. (8) to obtain:

§ = —ky|s|'sign(s) — ky|s|"sign(s) +

W= 7%sign(s) + @

where § = |dé(s,t) /dt| < L(t — to),& = M(H —H) is the TDE errors.

Step 1: Consider [so| > €1, where &1 > u,u > 0 are constants. The Eq. (8) can be written as:

dls(@)| _ ds(1) .

"= S sign(s(0)

= —als(0)]' = kals(t)” + wsign(s(r))

< —kols)’

(23)

(24)

Fort > t,, considering that the sign(s(t))and sign(w(t)) are opposite, that is w(t)sign(s(t)) < 0. Eq. (24) can be solved as:

1-p I=p
s(t S
|l(ﬁp < —kz(l—lo)-l‘%ﬁ —ka(t—10)
then:
5 1
Is(r)["~" <

- kz(p — 1)(t — to)

As |s(t)| decrease to |s(t)| = &; for a time T; <

value.

1
> kﬂp—l)e’l”“

(25)

(26)

which is the first term of Eq. (12). It can observe that this term is independent of the initial

At the end of Step 1, |s(t)| = &1 > 0. When t € [ty, T1], the sign(s(t)) and sign(w(t)) are opposite. |w(t)|increases for t € [to, T;] and satisfy

lo(T1)| < MT; < MW,

11

where M is the maximum speed of w(t). Based on the Egs. (8-10), M can be expressed as:
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1~ 1
M=—k;| —— L
Z*Qm—m4>+

1 m 1 ~1/2
=2 =———— | +2ekyé]
2{ ( 2k2(pl)e’]’l> i

1 .
- e(\’%w> +ekoe P+ L
1

If u < |so| < €1, Step 1 is invalid. There will be no term

+L 27)

in Eq. (12).

1
ka(p-1)eb "
Step 2: To prove the stability of the system and facilitate the analysis of the Lyapunov theory, the following new vector is defined:

200) = a0, 2] = [[s(o] sign(s(0)) 0] (28)

Obviously, sign(z;(t)) = sign(s(t)), Eq. (8) is written as:
1

4(1) = m( — 121 () — ka2 (1) Psign(za () + zZ(z))

ks
52
2 (0"

(29)

(1) = (H+o

Rewrite Eq. (29) into matrix form as follows:
1

i(r) = 72|T0)|A(z,t)zl(t) (30)

where:
—<7<\1 + k2|21(t)|2p71) 1 }
_(Ez -y) 0
1
2|z ()]

Note: If 2, (t) and 2,(t) converge to the neighborhood of the origin in fixed-time, s(t) and w(t) also have the same convergence properties.
Now consider defining the following Lyapunov function:

A = |

@ = |d&(s,0)/di| = w0z (1), ()] <2L

. -~ 1~
V(z, ki, k3) = V()(Z) +§k1 +§k3 (3D

where k; = k1 — k1,ks = k3 — k3.
Vo(2) is defined as follows:

Vo(z) = (A+4€) 2 + 2> —deziz = 7' Pz (32)

where:

[A+4e 26
P_{ —2¢ 1 }

The derivative of Eq. (32) can be expressed as:

Vo(z) =2 Pz + 7P =

Z\ZI(I)\ZT [AT(z)P + PA(2)]z
: ' (33)
— _—2|Z](t)|zTQ(z)z

Q(2z) is a symmetric matrix and expressed as:

0(z) =A"(z)P+PA(z) = [gi; %82} .

where:
Qi1 = 2ki4 + 4e(2eky — k) + 2(4 + 4e2)ka|z1 ()P + 4eyQuy = ks — 2eky — 2eko|z) ()P — 4 — 42—y
To ensure that the Q(z) is positive definite, the adaptive gain kj is:

k3 = 26k, + 2ek, &) (35)
Q(2) is the positive definite matrix, and the minimum eigenvalue satisfies y,,,,(Q) > 2e.

Using Rayleigh’s inequality 27Q(z)z > g,,,,(Q)|z]|?, we can further obtain:

12
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. | - 13
Vo(Z) = *mz Q(Z)Z < *m

According to Rayleigh’s inequality, Vo(2) < p,...(p)|2]|> and V(l)/ %(2) < /iy @) |2, Vo(2)can be expressed as:

=1 (36

Vo(z) < — vy (2),
where
V/ Hunin (P) 37)
Himax (P)

Applying theory 12 proposed from [44], The convergence time of Eq. (37) is estimate as:

p=c¢

2V (2(Th))

Tr(z(Ty)) < ] (38)
According to the end of Step 1, z;(T;) and 2,(T;) are bounded:
1
()| < &' |o(T)| < M—F———— (39)
[z1(T1) < &%, [z (Th)| < o= el
so that:
MZ
Vo(z(T1)) < (A +4€%) e +k2( 2D
—1)%¢
> (p 1 (40)
—4gel? M

" ha(p— Del!

Therefore, the second term of Eq. (12) is obtained. The Eq. (8) converges to the neighborhood of origin, thatis |z;| < y*/?or |s| < pand |z,| < n(y,L),
where 5 = fz? @3(3)/2 + L)ds; Theorem 2.1 is proved.

Note: The defined Lyapunov function is continuous but it does not satisfy the Lipschitz condition because Eq. (31) is differentiable everywhere
besides z = 0. Therefore, Lyapunov’s second method will be invalid. But, the convergent property can still be proved according to Zubov’s theorem
applied in [45], which only needs the Lyapunov function is continuous. In the meantime, the theories shown in [45] apply to the case that the de-

rivative of the Lyapunov function does not exist. Please refer to [46] for more details.
The derivation of Eq. (41) is given:

V(Z,’I‘C‘],ki;) = V()(Z) +7€']/I€1 +’/€3E3 (41)

and furthermore:

Vekig) < AV - Tkl - Tl + Rk,

2
) n n v “2)
ok + D+ 2k
3KR3 \/—2‘| l‘ \/—2“ 3‘
According to the following inequality:
(2 +57+2)" <l + Dl + I
we can derive:
=) = = Tl <y ViekE) 43)
where 57, = min(f,#,,7,). Therefore, Eq. (42) can be rewritten as:
V(Z,i{ll,’i{‘;) S 77’]0 \/ V(Z,’i{'h}%) +7€']/I€1 +7€'37€\3
44

k| + [k
vl

Since Eq. (8) is fixed-time convergence, the adaptive gains El and /IE3 are bounded. Vt > 0, 3 positive constants kj,ks, such that il —k; < Oand /k\3 —
ks < 0. Based on the above analysis, Eq. (44) can be simplified as:

Viz ki ks) < —no\/ (2, k1, ks) +¢ (45)
where :
- —\E\(E —%) —|7€3|(23—\’7/—2§)

13
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Case 1. Suppose that for t > 0, |s| > u. According to Eq. (9), we can be obtain:

-~ m T(7
ki=—L o= —|ks)( ks -2 (46)
= o= (B )
£ = '7—215 selected. The differential of Eq. (10) can be expressed as:
- - N 1 n
ks =26k, =22 1L (47)
’ : 2n, \/_ \/_

Therefore, { = 0, Eq. (43) becomes:
V(Z77€177€3) < =1y (Zy;h};z) (48)

V(Z7E17E3) is negative definite and the system is asymptotically stable.

Case 2. Suppose that |s| < y, ks calculated as follows:

m

R ifk, > k nOr|s| > u

k= { V2 (49)
0ifk, < knand|s| < u

with:
2|k1 7k1\\/‘1fk1 > kyorls| > u

= (50)
= Litk, < kyand|s| < p

| L
/s
In view of Eq. (45), the sign of Lyapunov function is indefinite. However, the validity of Eq. (50) only holds for a period of time. Because the

adaptive gains k: and k; are decreased, |s| will gradually become larger than p. Once [s| is larger than y, Case 1 holds again. The system is still
asymptotically stable, so on.
By combining |s| < p with Eq. (7), we can obtain:

s =é+a; D" [sig(e)”] + D" [sig(e)™], |s| < u (51)
Eq. (51) can be rewritten in the following two forms:
é+ a; DM [sig(e)™]

+(a2 —s(DP™! [sig(e)”])il)D’b" [sig(e)?] =0 (52)

¢+ (@ = s(D"[sigle))) ") D" Iigle)"]

(53)
+a, D" sig(e)] =0

If ay — s(D*271 [sig(e)"z])’1 > Oholds, Eq. (52) is in the same form as Eq. (7). The system will converge to the FONTSM manifold (see Eq. (7)) until
|D21[sig(e)™]| < az'u. Select gof Lemma as ¢ = co.

esssup| D7 [sig(e)™]| < Uesssuple|™ (54

where esssup(-)represents the essential maximum value.
Substituting|D*~1[sig(e)?]| < esssup|D*>~![sig(e)*]| into Eq. (54):

|D% " [sig(e)™]| < Uesssuple|™ (55)
A bounded time-varying variable w > 1 is introduced to make Eq. (55) become an equality.

|D%"[sig(e)™]| = @' Uesssuple|™ (56)
Substituting| D! [sig(e)]| < ag'pinto Eq. (56) can further obtain:

@ 'Uesssuple|” < a;'y (57)
Therefore, the error e will converge as follows:

le| < lefpee < (a3 pmU )" (58)

Similarly, we have | D" [sig(e)™]| < a7'u. Combining Eq. (7) and |D*2~1[sig(e)™]| < a3y, we can obtain:
lé| < |s| + | D" [sign(e)”]| + | a2 D™ [sign(e)™]| = 3u 59

To sum up, the stability proof of the closed-loop system has been completed.
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