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A B S T R A C T   

Piezoelectric displacement amplifiers (PDAs) have been widely used in precision positioning fields. However, the 
inherent hysteresis and creep nonlinear effect of piezoelectric actuators (PEAs) and time-varying lumped dis
turbances bring extreme challenges to the precise motion control of PDAs. Although various control schemes 
based on PEAs have been developed and have shown significant results. However, due to the high sensitivity of 
precision positioning to environmental variations, the development and identification of accurate models and the 
control timeliness often become obstacles in engineering. To realize precise motion control of PDAs under 
complex lumped disturbances, a new time-delay control scheme (AFSTA-FONTSM) using an adaptive fixed-time 
convergent super-twisting algorithm (AFSTA) and a fractional-order nonsingular terminal sliding mode 
(FONTSM) is proposed. Specifically, the time-delay information obtained by time-delay estimation technology is 
used to estimate the lumped dynamic characteristic of the system, thus establishing a simple control framework 
without a system dynamic model. FONSTM is constructed as a sliding mode manifold, and satisfactory error 
dynamic characteristic is obtained. A new AFSTA is designed as the reaching law in the sliding mode phase. 
AFSTA has fixed-time convergence when the upper bound of lumped disturbances exists, which ensures the 
control timeliness. Benefiting from the newly designed adaptive algorithm, the upper bound value of lumped 
disturbances is no longer needed to determine the control gains, which effectively prevents overestimation of the 
control gains. Correspondingly, the convergence time of AFSTA is estimated, and the stability of the closed-loop 
system is analyzed by the Lyapunov theory. Three existing time-delay control schemes, namely MSTA-FONTSM, 
AMSTA-FONTSM, and ASTA-FONTSM are selected, and four scenes are designed for comparative experiments. 
The experimental results show that MSTA-FONTSM has the worst control performance among the four control 
schemes. For the step, and continuous cosine trajectories with periods of T = 1 s and T = 2 s, the root-mean- 
square error of the proposed AFSTA-FONTSM is reduced by 56.86%, 54.03%, and 50.24% compared with 
MSTA-FONTSM. For disturbance experiments under different loads, the control performance of the proposed 
AFSTA-FONTSM is still superior to the other three control schemes without load.   

1. Introduction 

Piezoelectric actuators (PEAs) have attracted much attention for 
their unique performance. They are becoming more fascinating for the 
precise positioning field due to their high resolution, high stiffness, high 
electromechanical coupling efficiency, and fast response, such as micro/ 
nano stage [1,2], atomic force microscopy [3], vibration isolation 
platform [4], and so on. However, the motion range of PEAs is limited, 
and the piezoelectric displacement amplifiers (PDAs) are usually 
designed to increase the motion range of PEAs in practical engineering. 

One of the most typical applications is to replace the staff with a PDA to 
automatically complete the cell micromanipulation tasks, including 
puncture, injection, nuclear transplantation, and so on. In [5–7], the 
researchers designed different PDAs and controlled them to complete 
the cell puncture task. The diameter of a typical single cell is usually 10 
to 500 µm [8]. Therefore, precise control is crucial for PDAs. However, it 
is challenging work to design a high-performance controller for PDAs 
used in the micromanipulation tasks. The main obstacles include the 
following three aspects: (1). PEAs exhibit inherent hysteresis and creep 
nonlinear effect, and time-varying lumped disturbances, which makes it 
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very difficult to establish an accurate system model [9]; (2). Due to (1), 
the performance of PEAs is limited, and the positioning accuracy will be 
seriously deteriorated, thus affecting control accuracy [10]; (3). 
Micromanipulation tasks are extremely sensitive to lumped distur
bances, and some parameters of the whole system often change unex
pectedly [11]. The controller should have the rapid convergent ability in 
the face of disturbances to ensure control timeliness. 

To overcome these obstacles, many researchers have made efforts 
and several control schemes have been proposed for piezoelectric-driven 
mechanical systems, such as feedforward control [12,13], sliding mode 
control (SMC) [11,14], model predictive control [15], iterative learning 
control [1,16], and so on. As one of the most effective methods to deal 
with lumped disturbances, SMC and its variants have also been widely 
used in many fields. Their core content is to force the system state 
variables to reach the preplanned sliding mode manifold and to limit 
and remain on the sliding mode manifold as much as possible to ensure 
robustness. To further improve the local convergence characteristic of 
SMC, researchers have developed terminal sliding mode (TSM) [17], 
nonsingular TSM (NTSM) [18], and fractional-order NTSM (FONTSM) 
[5] respectively, and achieved satisfactory results. The above methods 
usually use switching elements to ensure that the system state variables 
reach the sliding mode manifold. Because the upper bound value of 
lumped disturbances is difficult to acquire in engineering, the large 
control gain is often applied to switching elements, which will lead to 
the well-known chattering phenomenon [19]. Researchers have pro
posed many methods to reduce chattering, such as upper bound layer 
[20], reaching law [5], adaptive law [21], high-order SMC (HOSMC) 
[22,23], and so on. Compared with other methods, HOSMC is more 
popular because of its good comprehensive performance. 

As one of the most powerful second-order continuous HOSMC al
gorithms, the super-twisting algorithm (STA) has become a research 
hotspot in many fields, such as power networks [24], electromagnetic 
direct-drive pump [25], magnetic levitation systems [26], and so on. It 
hides the switching elements behind an integrator [27], which can 
significantly reduce chattering without losing robustness [26]. Howev
er, the dominant term of STA is square root convergence, which will lead 
to a slow system response [28]. To improve the convergence speed of 
STA, researchers have proposed several modified STA (MSTA). The most 
classic modified algorithm is to add linear feedback terms to STA [29, 
30], and the convergence speed is improved, but it also leads to unde
sired overshoot. A new MSTA with double closed-loop feedback is pro
posed from [31]. This MSTA adds a proportional and a damping factor to 
the differential and the integral term of the sliding mode variable, which 
improves the convergence speed and reduces overshoot. It is worth 
noting that the above STA and MSTA have been proven to be finite-time 
convergence. The convergence time is related to the initial value. For 
instance, micromanipulation tasks are extremely precise, and any dis
turbances may affect the accuracy of the operation. When the system 
suffers from large disturbances, it may significantly deviate from the 
desired trajectory, resulting in large initial tracking errors. For a larger 
initial value, the convergence time will be longer, which leads to the 
control timeliness not being guaranteed. Therefore, it is a problem 
worthy of attention to design a fixed-time convergent STA (FSTA) and 
apply it to micromanipulation tasks. 

A FSTA presented in [32] contains too many interrelated control 
items, which makes the system more complicated. Basin et al. [33–35] 
have made a series of profound studies on the FSTA and estimated the 
convergence time. Although the above research has achieved gratifying 
results, they still need identification methods to obtain the system dy
namics model, which may not be suitable for micromanipulation tasks 
under complex lumped disturbances. 

The time-delay estimation (TDE) technology is an intuitive, efficient, 
and powerful tool to settle the above problems. The system dynamics 
can be effectively obtained only by using the time-delay information of 
the system state, and a simple framework is realized. Because of the 
above advantages, TDE technology has been broadly used in many 

fields, such as robot manipulator [36], exoskeleton [37], and so on. 
Meanwhile, the time-delay errors caused by TDE usually require a robust 
control strategy to further improve the control accuracy. Recently, a 
control scheme combining MSTA and TDE has been developed for the 
cable-driven manipulator [38]. In this scheme, the robust control 
strategy adopts FONTSM with better performance and achieves satis
factory results. However, the constant control parameters need to be 
calculated by the upper bound value of lumped disturbances [39], which 
is difficult to obtain in engineering. When the disturbances change 
obviously, using fixed gains may lead to poor control performance. 

Inspired by the above essential issues, we propose a new time-delay 
control scheme with an adaptive FSTA (AFSTA) and a FONTSM (AFSTA- 
FONTSM). Firstly, the control framework without a system dynamic 
model is established using TDE to estimate the lumped dynamic char
acteristic. Next, based on the TDE control framework, the control 
scheme is developed with FONTSM and AFSTA as sliding manifold and 
reaching law, respectively, and a new adaptive algorithm is designed. 
Then, the convergence time of AFSTA is estimated in detail, and the 
stability of the closed-loop system is analyzed by the Lyapunov theory. 
Finally, the reliability and superiority of the proposed control scheme 
are verified by comparative experiments in different scenes. 

To be specific, the main contributions of this paper are as follows:  

1) to propose a new time-delay control scheme with AFSTA-FONTSM. 
TDE technology is applied to establish a simple control framework 
without a system dynamics model. FONTSM is used as the sliding 
mode manifold to obtain a more satisfactory error dynamic charac
teristic. A new AFSTA is proposed as the reaching law. Being 
different from the existing finite-time convergent MSTA [38], 
AMSTA [40], and ASTA [41], when the disturbances are bounded, 
AFSTA ensures control timeliness with fixed-time convergence. 
Therefore, it has a faster convergence speed in the sliding mode 
phase.  

2) to propose a new adaptive algorithm. The adaptive algorithm can 
generate appropriate control gains. Its advantage is that it no longer 
requires the upper bound value of the lumped disturbances to 
determine the control gains, which effectively prevents the over
estimation of the control gains.  

3) to estimate the convergence time of AFSTA and give the stability 
proof of the closed-loop system using the Lyapunov theory.  

4) to verify the reliability and superiority of the proposed AFSTA- 
FONTSM compared with the existing control schemes by compara
tive experiments in four scenes. 

The rest of this paper is organized as follows: In Section 2, the new 
control scheme and adaptive algorithm are designed and discussed. 
Comparative simulations are performed in Section 3. Comparative ex
periments are carried out in Section 4. A conclusion is presented in 
Section 5. The nomenclature list, detailed convergence time estimation, 
and stability proof are given in the Appendix. 

2. Control scheme 

2.1. System dynamics model 

Fig. 1 shows a PDA device made of aluminum alloy 7075, which is 
machined by electric discharge machining. It is composed of leaf flexure 
hinges and is driven by a PEA. The system can be equivalent to a second- 
order dynamic model with a hysteresis effect, which can be described as 
[5]: 

mẍ+ cẋ+ kx = Tem(u − h) − fp (1)  

where m,c, and k represent mass, damping coefficient, and stiffness co
efficient; ẍ,ẋ, andxare acceleration, velocity, and displacement; Temis the 
conversion coefficient; u is the input voltage; h is the hysteresis term; fp 
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are other unmodeled disturbances. 
According to Eq. (1), the control input can be expressed as: 

u = T − 1
em

(
mẍ+ cẋ+ kx+ fp

)
+ h (2) 

Because it is difficult to obtain Tem in practical engineering, we 
introduce a nominal value T̂em and Eq. (2) can be rewritten as: 

u = T̂
− 1
em mẍ+H (3)  

where: 

H = T − 1
em

(
cẋ+ kx+ fp

)
+ h+

(
T − 1

em − T̂
− 1
em

)
mẍ 

Note that H includes dynamic parameters, the hysteresis nonlinear 
effect of PEA, and the other unmodeled disturbances. They can all be 

regarded as lumped disturbances. Ḣis bounded and 
⃒
⃒
⃒Ḣ
⃒
⃒
⃒ ≤ ψ . We can 

clearly observe that it is difficult to obtain an accurate model. Therefore, 
we try to propose a new control scheme without a system dynamics 
model to realize the accurate trajectory tracking of PDA. 

2.2. TDE Framework 

Aiming at the above difficulties, we propose a control framework 
without a system dynamic model using TDE. Specifically, the mathe
matical expression is as follows: 

Ĥ ≅ H(t− Δt) (4)  

where Δt is delayed time. The lumped disturbances are directly esti
mated by H(t− Δt). 

In engineering, the scheme can be efficient when Δt is selected very 

small [39]. We denote T̂
− 1
em m as M. Substituting Eq. (4) into Eq. (3), we 

can obtain: 

Ĥ = u(t− Δt) − Mẍ(t− Δt) (5)  

where u(t− Δt) is easily obtained by the delay value of u. But ẍ(t− Δt) can’t be 
obtained by actual observation. Therefore, numerical differentiation is 
usually used as follows [38]: 

ẍ(t− Δt) =

⎧
⎨

⎩

xt − 2x(t− Δt) + x(t− 2Δt)

Δt2 t > 2Δt

0t ≤ 2Δt
(6) 

The approximate errors of Eq. (6) are directly proportional to O(Δt2). 

In engineering, Δt usually selects a small value. Therefore, the errors can 
be ignored. Numerical differentiation will amplify noise, which can be 
settled by setting a smallerMand adding a low-pass filter. 

2.3. Proposed AFSTA-FONTSM scheme 

To obtain more superior dynamic characteristic, we apply the 
FONTSM manifold as follows [38]: 

s = ė+α1Dλ1 [sig(e)σ1 ] +α2Dλ2 − 1[sig(e)σ2 ] (7)  

where α1,α2,λ1,λ2,σ1,σ2 are positive parameters, and satisfy the 
following condition: 0 < λ1, λ2, σ1, σ2 < 1.e = xd − x ∈ R, xd is desired 
trajectory, andxis actual trajectory. sig(x)y

= |x|ysign(x) ∈ R, 
Dx(y)represent fractional-order operator. 

The above FONTSM manifold has been verified to effectively ensure 
higher control accuracy and faster convergence speed. To suppress 
control chattering and achieve fixed-time convergence in the sliding 
mode phase, FSTA is used as the reaching law to ensure control timeli
ness [33,34]: 

ṡ = − k1|s|1/2sign(s) − k2|s|psign(s) + ω, s(t0) = s0

ω̇ = −
k3

2
sign(s) + φ, ω(t0) = ω0

(8)  

wherek1,k2,k3 > 0andp > 1. φsatisfy Lipschitz disturbances. 
To estimate the convergence time of FSTA, we will make the 

following definitions: 

Definition 2.1. ∀s0 ∈ R,∃T(s0), such that (s(t) ∈ R) = 0, and it is also 
satisfied for all t ≥ T, at which the STA is regarded as finite-time 
convergence to the origin. 

Definition 2.2. ∀s0 ∈ R, ∃T(explicitly indicated), such that (s(t) ∈ R)

= 0, and it is also satisfied for all t ≥ T, at which the STA is regarded as 
fixed-time convergence to the origin. 

Definition 2.3. ∀s0 ∈ R, ∃T(explicitly indicated), such that 
(s(t) ∈ R) ∈ (S⊂R), and it is also satisfied for all t ≥ T, at which the STA 
is regarded as fixed-time convergence to the neighborhoodSof the 
origin. 

If the disturbance is bounded, Eq. (8) converges to the neighborhood 
of the origin in fixed-time. 

Proof. The upper bound estimation of convergence time is given in the 
Appendix B. 

Fig. 1. Dynamic system of PDA.  
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As mentioned in [39], constant gains k1 and k3 are used. However, it 
is necessary to know the upper bound value of lumped disturbances 
when determining k1 and k3. Due to the upper bound value of lumped 
disturbances being difficult to obtain in engineering, the constant value 
may overestimate the control gains, thus increasing the chattering of the 
system. 

To settle this problem, we proposed a new adaptive algorithm. When 
the control performance becomes worse, the gains should be increased 
to obtain higher convergence accuracy and faster response. On the 
contrary, it should be decreased rapidly to ensure stable performance 
and suppress noise effects. Specifically, the adaptive algorithm is as 
follows: 

˙̂k1 =

⎧
⎨

⎩

η1̅̅̅
2

√ sign(|s| − μ)if k̂1 > kmor|s| > μ

0if k̂1 ≤ kmand|s| ≤ μ
(9)  

k̂3 = 2εk̂1 + 2εk2ε(p− 1/2)
1 (10)  

where ε,ε1,η1,μare arbitrary positive parameters. kmis the lower bound 
ofk̂1. 

In addition, if |s0| > μ, k̂1needs to satisfy the following conditions: 

k̂1 >
− λk2εp− 1/2

1 − (4L + 1)ε
λ(1 − δ)

+
( − λ − 4ε2 − 2L)2

8ελ(1 − δ)
(11)  

whereδ, λ, ε are arbitrary positive constants, and 0 < δ < 1. 
The upper bound estimation of convergence time can be given by the 

following Theorem. 

Theorem 2.1. Consider Eq. (8) exist a disturbance upper bound L, 
∀s0 ∈ R, ∃μ ≥ 0, such that s(t) converge to the neighborhood of the 
origin in fixed-time. 

Tf ≤
1

k2(p − 1)ε1
p− 1 +

2
β

[
(
λ + 4ε2)ε1 +

M2

k2
2(p − 1)2ε2(p− 1)

1

− 4εε1
1/2 M

k2(p − 1)εp− 1
1

]1/2
(12)  

where ε1 ≥ μ. 

М = ε
(

η1̅̅̅
2

√ ⋅
1

k2(p − 1)εp− 1
1

)

+ εk2εp− 1/2
1 +L  

Proof. The detailed proof of Theorem 2.1 is given in the Appendix B. 

Remark 2.1. Note that the applicable condition of Theorem 2.1 is that 
Eq. (11) is satisfied when t0 ≥ 0. If Eq. (11) is not satisfied at t = 0, the 
adaptive gain k̂1 will be increased based on Eq. (9) until Eq. (11) is 
satisfied at t0. t0 can be estimated as: 

t0 ≤

̅̅̅
2

√

η1

[
− λk2εp− 1/2

1 − (4L + 1)ε
λ(1 − δ)

+
( − λ − 4ε2 − 2L)2

8ελ(1 − δ)
− k̂1(0)

]

(13) 

Because L exists, t0 can be estimated. Otherwise, Eq. (11) will be 
satisfied in some finite-time, which exists but is unknown. 

Combining Eq. (3), Eq. (5), Eqs. (7–10), a new AFSTA-FONTSM 
control scheme is proposed as follows: 

u = Mẍ+ Ĥ (14) 

Therefore, the final control law can be expressed as follows: 

u = M
(
ẍd + α1Dλ1+1[sig(e)σ1 ] + α2Dλ2 [sig(e)σ2 ]

+k̂1|s|1/2sign(s) + k2|s|psign(s) +
k̂3

2

∫

sign(s)
)

+u(t− Δt) − Mẍ(t− Δt)

(15) 

The block diagram of the time-delay control scheme based on 
AFSTA-FONTSM is shown in Fig. 2. 

Remark 2.2. To obtain the relatively satisfactory control parameters 
of the proposed control scheme, the following adjustment processes are 
adopted: 

Step (1): Let σ1 = σ2 = α1 = α2 = 1, k̂1 = k2 = k̂3 = 0. λ1 andλ2 

applies the data from [38,40]. Мstarts from a small value and increases 
in turn until the control performance deteriorates. An adjustment pro
cess similar toМcan be used to determineα1andα2;. 

Step (2): Keep k̂1 = k2 = k̂3 = 0, σ1,σ2decrease from 1 in turn, and 
observe the control performance;. 

Step (3): Keep k2 = k̂3 = 0, set an appropriate km according to the 
control performance. η1 increases from 0 in turn and μ decreases from a 
large value to a small value, while observing the control performance. k2 
is effectively determined by the same adjustment process asη1. 

Step (4): ε increases from 0 in turn until the control performance is 
observed to deteriorate. ε1 and p can be determined by the same 
adjustment process asε. 

Through the above processes, the control parameters can be 
adjusted. If the control performance does not meet the standards, the 
above processes should be repeated. 

2.4. Discussion of proposed control scheme 

(1) Discussion with the existing MSTA-FONTSM control scheme. 
The proposed AFSTA-FONTSM is compared with the recently pro

posed control scheme from [38], namely MSTA-FONTSM. The control 
law of MSTA-FONTSM is rewritten as follows: 

u = M
(
ẍd + α1Dλ1+1[sig(e)σ1 ] + α2Dλ2 [sig(e)σ2 ]

+k1|s|1/2sign(s) + k2s + k3

∫

sign(s)dt + k4

∫

sdt
)

+u(t− Δt) − Mẍ(t− Δt)

(16) 

Compared with MSTA-FONTSM, the proposed AFSTA-FONTSM has 
the following two advantages: 

2.5. Control timeliness 

Both control schemes adopt FONTSM error dynamics and have been 
proven to have faster response speed and higher accuracy than linear 
error dynamics. However, MSTA is finite-time convergence, and the 
convergence time is related to the initial value. Therefore, for a large 
initial value, the convergence time may also become longer and the 
control timeliness will become worse. The proposed AFSTA-FONTSM 
can ideally ensure control timeliness. 

2.6. Flexibility of parameters 

MSTA-FONTSM needs to obtain the upper bound value of lumped 
disturbances to determine the control gains. This work can be extremely 
difficult. The constant control parameters may overestimate the control 
gains, thus leading to chattering and affecting control accuracy. 
Compared with MSTA-FONTSM, the proposed AFSTA-FONTSM enjoys 
good parameter flexibility and no longer needs the upper bound value of 
lumped disturbances. 

(2) Discussion with the existing AMSTA/ASTA-FONTSM control 
schemes. 

The proposed AFSTA-FONTSM is compared with the recently pro
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posed adaptive control scheme from [40,41]，referred to as 
AMSTA-FONTSM and ASTA-FONTSM respectively. The control law of 
AMSTA-FONTSM can be given as [40]: 

u = M
(
ẍd + α1Dλ1+1[sig(e)σ1 ] + α2Dλ2 [sig(e)σ2 ]

+k1|s|1/2sign(s) + k2s + ρ̂(s)sign(s)
)

+u(t− Δt) − Mẍ(t− Δt)

(17) 

The adaptive gain ρ̂ can be express as [40]: 

˙̂ρ = ϑ|s| − ϑϕυρ̂, ρ̂ = ρmaxsat(ρ̂/ρmax) (18) 

where ϑ, ϕ, υ are positive parameters, andρmaxis the upper bound 
value of the adaptive gainρ̂; sat(□)is the saturation function. 

The control law of ASTA-FONTSM can be given as [41]: 

u = M
(
ẍd + α1Dλ1+1[sig(e)σ1 ] + α2Dλ2 [sig(e)σ2 ]

+k̂1|s|1/2sign(s) + k̂2sign(s)
)

+u(t− Δt) − Mẍ(t− Δt)

(19) 

The adaptive gain k̂1 and k̂2 can be express as [41]: 

˙̂k1 =

⎧
⎨

⎩

− θ1, if k̂1 ≥ k1 max
− θ2, ifk1 min < k̂1 < k1 max, |s| < Δ
θ1, if k̂1 ≤ k1 minork1 min < k̂1 < k1 max, |s| ≥ Δ

(20)  

k̂2 = θ3 k̂1 (21)  

where θ1,θ2,θ3,Δare positive parameters; k̂1 minand k̂1 maxrepresent the 
minimum and maximum values of k̂1. θ1 and θ2stand for different speed 
parameters. 

The proposed AFSTA-FONTSM is compared with AMSTA/ASTA- 
FONTSM in the following two aspects:  

1) Control timeliness 
AMSTA and ASTA have also been proven to be finite-time 

convergence from [40] and [41] respectively. As previously 
analyzed, the control timeliness of the two algorithms is worse than 
the proposed AFSTA.  

2) Adaptive algorithm 

The saturation function is used in the adaptive algorithm of AMSTA, 
which may cause chattering and even destroy the hardware system. To 
suppress chattering, bound layer technology is selected, which will lead 
to the loss of stability in finite-time convergence and a decrease in 
control performance [42]. In addition, the adaptive algorithm of AMSTA 
is a low-pass-filter-like structure. Hence, it can’t reflect the control 
system accurately and in real-time, which may lead to overestimation of 
the control gains and deterioration of the control performance. On the 

contrary, the adaptive algorithm of AFSTA has a principle similar to Eq. 
(20). The advantage can not only ensure timeliness but also reflect the 
control performance accurately and in real-time without overestimating 
the gains. 

The above discussions will be verified by the following simulations 
and experiments. 

3. Simulation demonstration 

3.1. Simulation setup 

We compare the two kinds of MSTA and STA used in [38], [40] and 
[41] with FSTA. The specific forms are summarized in the following  
Table 1. 

We designed the following two simulation scenes. Scene one: the 
simulation is run with a small initial value s0 = 10,ω0 = 0and distur
bance ξ = 3 sin(t), so that L = 3. Scene two: the disturbance is un
changed, and the large initial value s0 = 200 and ω0 = 0 are performed 
to further analyze the influence of the initial value on the convergence 
results. The sampling time of the system simulation is set to 0.1 ms. The 
gains of FSTA are selected as k1 = 10, k2 = 10,k3 = 10, p = 1.5. For the 
sake of fairness, the four algorithms should ensure that the gains of the 
corresponding positions are consistent. Specially, k4 = 1. 

3.2. Result and discussion 

The simulation time of scene one is set to 2 s, and the simulation 
results are shown in Fig. 3. 

As depicted in Fig. 3, the sliding mode variable s of four algorithms 
can converge to the neighborhood of the origin. Under the disturbance, 
the slight fluctuation of intermediate variable ω will not affect the 
convergence accuracy of s. The convergence time of the four algorithms 
is TSTA = 0.7006s, TMSTA1 = 0.2961s, TMSTA2 = 0.3603s, and TFSTA =

0.2549s, respectively. FSTA can provide the fastest convergence speed 
under the same gains. 

Fig. 2. Control scheme block diagram.  

Table 1 
Specific Forms of Algorithm.  

Reference Name Algorithm Form 

[41] 
STA ṡ = − k1|s|1/2sign(s) + ω

ω̇ = − k2sign(s) + φ 

[40] 
MSTA1 ṡ = − k1|s|1/2sign(s) − k2s + ω

ω̇ = − k3sign(s) + φ 

[38] 
MSTA2 ṡ = − k1|s|1/2sign(s) − k2s + ω

ω̇ = − k3sign(s) − k4s + φ 

[33,34] 
FSTA ṡ = − k1|s|1/2sign(s) − k2|s|psign(s) + ω

ω̇ = −
k3

2
sign(s) + φ   
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The simulation time of scene two is set to 10 s, and the simulation 
results are shown in Fig. 4. 

Fig. 4 shows that the sliding mode variable s of the four algorithms 
can still converge to the neighborhood of the origin, completely. The 
convergence time is TSTA = 5.3217s,TMSTA1 = 0.5068s,TMSTA2 =

4.5556s and TFSTA = 0.3108s, respectively. The increase percentage of 
convergence time is PSTA = 659.59%, PMSTA1 = 71.16%,PMSTA2 =

1164.39% and PFSTA = 21.93%, respectively. STA, MSTA1, and MSTA2 
belong to finite-time convergence. MSTA1 and MSTA2 add closed-loop 
feedback terms, which effectively improve the convergence speed. 
However, the convergence time whose upper estimate is still related to 
the initial value. Therefore, the three algorithms are greatly influenced 
by the initial value. For a large initial value, FSTA still has a strong 

advantage in convergence speed. 
To conclude, the simulation results demonstrated that FSTA is su

perior to the existing super-twisting-like algorithms. When the distur
bance is bounded, the upper bound estimation of the convergence time 
of FSTA is independent of the initial value. It has a faster convergence 
speed and can ensure control timeliness. 

4. Experimental demonstration 

4.1. Experimental setup 

The experiments take a PDA as plant (see Fig. 5). 
The experimental system is briefly described as follows. The control 

signal of PEA is provided by a voltage amplifier. The displacement is 
measured by a laser sensor in real-time. The signal needs to be pre
processed by the signal conditioner and collected by the analog-to- 
digital converter channel of the data acquisition card. A digital-to- 
analog converter channel outputs a control signal, which is passed 
through a voltage amplifier. The control program is developed in 
MATLAB/Simulink of the host personal computer and downloaded to 
the target computer by TCP/IP after the program is compiled. The 
sampling frequency of the system is set to 10 kHz. The experimental 
instruments are depicted in Fig. 6. 

We perform experiments to compare the above four control schemes. 
The parameters of FONTSM andМare selected as follows: λ1 = 0.01,λ2 =

0.99,σ1 = σ2 = 0.95,α1 = α2 = 1, M = 0.004. The delayed time Δt is 
set to 0.1 ms. The parameters of the proposed AFSTA-FONTSM (see Eqs. 
(9, 10, 15)) are as follows: km = 190, k2 = 0.1,p = 1.5,μ =

0.00025,ε1 = 0.1,ε = 0.006,η1 = 30. To ensure fairness, the setting of 
other parameters should be the same as the proposed AFSTA-FONTSM. 
To be specific, the parameters of MSTA-FONTSM (see Eq. (16)) are 
selected as follows: k1 = 190,k2 = 0.1,k3 = 0.15,k4 = 5; The parame
ters of AMSTA-FONTSM (see Eq. (17-18)) are selected as follows: k1 =

190,k2 = 0.1,ϑ = 100, ϕ = 0.1,υ = 20,ρmax = 200; The parameters of 
ASTA-FONTSM (see Eqs. (19–21)) are selected as follows: k1 min = 190, 
k1 max = 220,Δ = 0.00025,θ1 = 25,θ2 = 50,θ3 = 0.012. 

To demonstrate the reliability and superiority of the proposed 
AFSTA-FONTSM, four experimental scenes are designed as follows. 
Scene one: We use the above four schemes to control PDA to track a step 
trajectory and to evaluate the dynamic response of the system. Scene 
two: The above four schemes are also used to control PDA to track a slow 
cosine trajectory with a period of T = 2 s without load. Then, the 
tracking abilities of the four control schemes for a continuous trajectory 
are compared and analyzed. Scene three: A relatively fast cosine tra
jectory (T = 1 s) is tracked to further compare the control performance 
of the four schemes. Scene four: The constant load and monotonically 
increasing load are exerted on PDA respectively to confirm the robust
ness of the proposed AFSTA-FONTSM to lumped disturbances. The 
robustness of the proposed AFSTA-FONTSM can be verified by 
comparing the control performance with load and without load. 

4.2. Result and discussion 

(1) Analysis results of scene one: We control PDA to track a step tra
jectory with an amplitude of 100 µm. The experimental results of scene 
one are shown in Fig. 7. 

As depicted in Fig. 7, the four control schemes can realize step tra
jectory tracking. It can be intuitively observed that the best tracking 
performance can be obtained by using the proposed AFSTA-FONTSM 
because the tracking errors are always smaller than other control 
schemes. To quantitatively evaluate the dynamic response of the system, 

the rise time (Tr) and root-mean-square error (RMSE)=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1e2
i /N

√

within a 1% errors range are taken as performance indicators. The 
analysis results are listed in Table 2. 

From Table 2, the proposed AFSTA-FONTSM has the fastest rise time 

Fig. 3. Simulation results of scene one. (a) Sliding mode variable s; (b) Inter
mediate variable ω. 

Fig. 4. Simulation results of scene two. (a) Sliding mode variable s; (b) Inter
mediate variable ω. 

Z. Song et al.                                                                                                                                                                                                                                     



ISA Transactions xxx (xxxx) xxx

7

and the smallest RMSE, which is 1.8736 s and 0.3248 µm. The control 
performance of MSTA-FONTSM is the worst. Compared with MSTA- 
FONTSM, the rise time result of AMSTA-FONTSM, ASTA-FONTSM, 
and AFSTA-FONTSM is reduced by 3.78%, 4.12%, and 8.15%, respec
tively. For RMSE, the result of AMSTA-FONTSM, ASTA-FONTSM, and 
AFSTA-FONTSM is reduced by 23.84%, 41.09%, and 56.86%, respec
tively. The analysis results show that the proposed AFSTA-FONTSM has 
a better dynamic response than the other three control schemes. 

(2) Analysis results of scene two: The desired trajectory is defined as 
xd = 50 − 50 cos(2πt). The experimental results of scene two are shown 
in Fig. 8. 

As depicted in Fig. 8, the four control schemes have achieved 

Fig. 5. Experimental system.  

Fig. 6. Experimental instruments.  

Fig. 7. Experimental results of scene one. (a) Trajectory tracking; (b) Tracking errors.  

Table 2 
Analysis results of performance indicators of step trajectory.  

Signal Indicator Control Scheme 

MSTA- 
FONTSM 

AMSTA- 
FONTSM 

ASTA- 
FONTSM 

AFSTA- 
FONTSM 

Step Tr(s) 2.0399 1.9628 1.9558 1.8736 
RMSE 
(μm) 

0.7529 0.5734 0.4435 0.3248  
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satisfactory control effects. The results verify that TDE technology, 
FONTSM error dynamics, and MSTA/AMSTA/ASTA/AFSTA control 
scheme can effectively realize the without a system dynamic model 
control of PDA with the hysteresis effect. It can be clearly that the 
proposed AFSTA-FONTSM has the smallest tracking errors among the 
four control schemes. For quantitative analysis, the following perfor
mance indicators are defined as: the RMSE, the absolute average error 
(AAE) =

∑N
i=1|ei|/N, the maximum error (MAX)= MAX

∑N
i=1|ei|. The 

corresponding analysis results are given in Fig. 9. 
In Fig. 9, control schemes 1, 2, 3, and 4 represent MSTA-FONTSM, 

AMSTA-FONTSM, ASTA-FONTSM, and AFSTA-FONTSM. The control 
performances of the three adaptive schemes are better than MSTA- 
FONTSM. Compared with MSTA-FONTSM, the RMSE result of 

AMSTA-FONTSM, ASTA-FONTSM, and AFSTA-FONTSM is reduced by 
25.21%, 37.18%, and 54.03%, respectively. For AAE, the result of 
AMSTA-FONTSM, ASTA-FONTSM, and AFSTA-FONTSM is reduced by 
25.30%, 37.07%, and 54.62%, respectively. The MAX result of AMSTA- 
FONTSM, ASTA-FONTSM, and AFSTA-FONTSM is reduced by 17.20%, 
36.72%, and 49.33%, respectively. 

It can be clarified that the proposed AFSTA-FONTSM can ensure high 
control accuracy and has the best control performance among the four 
control schemes. We further compare the adaptive algorithms as shown 
in Fig. 8(c) and (d). The proposed adaptive algorithm (see Eq. (9)) can 
update the control gains quickly and accurately according to real-time 
control performance. When the control performance tends to decrease, 
the adaptive gains are increased. On the contrary, they will quickly 
decrease to the lower bound value to guarantee a smooth control effect. 
Although the adaptive algorithm (see Eq. (20)) of ASTA-FONTSM can 
also realize the above updating process. Due to the performance of STA 
being worse than that of FSTA, the tracking errors are larger than that of 
AFSTA-FONTSM, which leads to larger control gains. In addition, the 
adaptive algorithm (see Eq. (18)) of AMSTA-FONTSM can also increase 
the control gains when the control performance deteriorates. However, 
there is still a non-zero gain of time-varying noise when the control 
performance is relatively perfect. This phenomenon is caused by the 
low-pass-filter structure, which may bring large noise control and per
formance deterioration even though the performance of MSTA is better 
than STA. Therefore, the proposed adaptive algorithm can obtain more 
satisfactory comprehensive performance compared with the existing 
ones. The above analysis results convincingly demonstrate the reliability 
and superiority of the proposed AFSTA-FONTSM, and this control 
scheme has high control accuracy. 

(3) Analysis results of scene three: A relatively fast cosine trajectory 
(T = 1 s) is defined to further demonstrate trajectory tracking perfor
mance. The experimental results are shown in Fig. 10. 

As shown in Fig. 10, the four control schemes can still have relatively 
satisfactory tracking effects. When the errors of the four control schemes 
slightly increase, the proposed AFSTA-FONTSM still has the smallest 

Fig. 8. Experimental results of scene two. (a) Trajectory tracking; (b) Tracking errors; (c) Adaptive gains of ASTA and AFSTA, k1 = k̂1; (d) Adaptive gain of AMSTA, 
ρ = ρ̂. 

Fig. 9. Control performance of scene two.  
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tracking errors. The above performance indicators continue to be used 
for analysis, and the corresponding results of scene three are shown in  
Fig. 11. 

We can observe that the analysis results similar to that of Fig. 9 are 
given in Fig. 11. When tracking the relatively fast cosine trajectory, the 
control performance of the four control schemes decreases slightly. 
Therefore, the gains of the three adaptive algorithms are also increased 
compared with scene one. Nevertheless, the proposed adaptive algo
rithm can still ensure that AFSTA-FONTSM has the best comprehensive 
control performance. The results once again show that the proposed 
AFSTA-FONTSM has obvious advantages over the existing three control 
schemes. 

(4) Analysis results of scene four: The mass of PDA is 0.096 kg. A load 

of 0.02 kg is exerted on the end of PDA. The desired trajectory is still a 
relatively fast (T = 1 s) cosine trajectory. Then, a low-density sponge 
with an initial weight of 0.0042 kg is added to the end of PDA while 
maintaining the desired trajectory unchanged. A peristaltic pump with 
1.865 mL/s of constant flow is used to continuously inject water into the 
sponge. The control time is 4 s, which ensures the monotonically 
increasing disturbances from 0.042 kg to 0.012 kg. The experimental 
results of scene four are shown in Fig. 12. The corresponding control 
performance results are shown in Fig. 13. 

As depicted in Fig. 12 and Fig. 13, the proposed AFSTA-FONTSM can 
still ensure satisfactory control performance under constant load and 
monotonically increasing load. The results strongly verify the robustness 
of the proposed AFSTA-FONTSM to lumped disturbances. Under the 
constant load, RMSE is increased by 10.94%, AAE is increased by 
10.02%, and MAX is increased by 19.91% compared with scene three 
(without load). Under monotonically increasing load, RMSE is increased 
by 6.97%, AAE is increased by 4.74%, and MAX is increased by 10.25% 
compared with scene three. 

In the case of load, the amplitude of RMSE and AAE is relatively 
small, while MAX increases relatively large, which is mainly affected by 
the proposed adaptive algorithm. When the tracking errors tend to 
decrease, the adaptive gains also decrease, which makes the amplitude 
of RMSE and AAE slightly increase. On the contrary, the adaptive gains 
speedily increase to suppress the tracking errors leading to the ampli
tude of MAX increases relatively large. The results demonstrate that the 
proposed adaptive algorithm can still effectively ensure control accu
racy with lumped disturbances. In addition, the control performance of 
the proposed AFSTA-FONTSM under load is still better than the other 
three control schemes without load, which further shows the superiority 
of the proposed control scheme in robustness and control accuracy. 

To conclude, the experimental results of the proposed AFSTA- 
FONTSM in the above four different scenes show satisfactory compre
hensive control performance, which strongly demonstrates reliability 
and superiority compared with the existing three control schemes. 

Fig. 10. Experimental results of scene three. (a) Trajectory tracking; (b) Tracking errors; (c) Adaptive gains of ASTA and AFSTA, k1 = k̂1; (d) Adaptive gain of 
AMSTA, ρ = ρ̂. 

Fig. 11. Control performance of scene three.  
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5. Conclusion 

To realize better control performance of PDA under complex lumped 
disturbances, this paper proposed a new time-delay control scheme using 
AFSTA and FONTSM. Firstly, TDE to estimate the lumped dynamic char
acteristic and a control framework without a system dynamic model is 
established. Next, the error dynamic characteristic with better perfor
mance is obtained by constructing the FONSTM manifold. Furthermore, a 
new AFSTA is proposed as the reaching law in the sliding mode phase. 
AFSTA has fixed-time convergence when the lumped disturbances are 
bounded, and the convergence time is independent of the initial value, 
which effectively ensures control timeliness. Meanwhile, the newly 
designed adaptive algorithm ensures that control gains no longer need the 
upper bound value of lumped disturbances, and will not lead to over
estimation of control gains. Then, the convergence time of AFSTA is esti
mated and the stability of the closed-loop system is proved by the 
Lyapunov theory. Finally, we designed four scenes and performed 
comparative experiments with the recently proposed MSTA-FONTSM, 

AMSTA-FONTSM, and ASTA-FONTSM control schemes, verifying the 
reliability and superiority of the proposed AFSTA-FONTSM. For the step 
trajectory in scene one, the rise time and RMSE of the proposed AFSTA- 
FONTSM is 1.8736 s and 0.3248 µm respectively, which have better dy
namic response than the other three control schemes. For the continuous 
cosine trajectory with a period of T = 2 s in scene two, RMSE, AAE, MAX 
are reduced by 54.03%, 54.62%, and 49.33% respectively compared with 
MSTA-FONTSM, which has the worst performance among the three con
trol schemes. For the cosine trajectory (T = 1 s) in scene three, the control 
performance of the proposed AFSTA-FONTSM is still superior to the other 
three control schemes. For the constant load and monotonically increasing 
load in scene four, the proposed AFSTA-FONTSM can still ensure high 
control accuracy, even better than the other three control schemes without 
load. The experimental results show that the proposed AFSTA-FONTSM 
has the best comprehensive control performance and robustness. 

It is worth noting that the TDE technique has an excellent effect on 
continuous nonlinear disturbances, such as gravity, Coriolis force, and 
so on. However, it is not perfect for discontinuous nonlinear distur
bances, such as friction, mechanism clearance, and so on. This is also the 
limitation of the proposed work. But for PDA, the structure design 
adopts a flexible mechanism. Its advantage is that there is no friction and 
mechanism clearance, which fundamentally reduces other unmodeled 
disturbances. In future work, we will try to study the influence of 
discontinuous disturbances on TDE and compensate for TDE errors 
caused by discontinuous disturbances. 
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Fig. 12. Experimental results of scene four. (a) Trajectory tracking; (b) Tracking errors; (c) Adaptive gain of AFSTA, k1 = k̂1; (d) Adaptive gain of AFSTA, k3 = k̂3.  

Fig. 13. Control performance of scene four.  
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Appendix A  

Nomenclature 

piezoelectric displacement amplifier PDA 
piezoelectric actuator PEA 
sliding mode control SMC 
high-order SMC HOSMC 
super-twisting algorithm STA 
adaptive STA ASTA 
modified STA MSTA 
adaptive MSTA AMSTA 
fixed-time convergent STA FSTA 
adaptive fixed-time convergent super-twisting algorithm AFSTA 
fractional-order nonsingular terminal sliding mode FONTSM 
time-delay estimation TDE 
terminal sliding mode TSM 
nonsingular TSM 

rise time 
root-mean-square error 

NTSM 
Tr 
RMSE 

absolute average error AAE 
maximum error MAX  

Appendix B 

Before stability analysis, the following Lemma is introduced. 
Lemma[Lemma 2.1(a) of [43]]: The fractional integral operators Ia

b+ and Ia
c− with R(a) > 0 are bounded in Lq(b, c),1 ≤ q ≤ ∞: 

⃦
⃦Ia

b+y
⃦
⃦

q ≤ U‖y‖q,
⃦
⃦Ia

c− y
⃦
⃦

q ≤ U‖y‖q

(

U =
(c − b)R(a)

R(a)|Γ(a)|

)

(22) 

where Γ(⋅) is the Gamma function. 
The proposed AFSTA-FONTSM control scheme (Eq. (15)) and adaptive algorithm (Eqs. (9, 10)) can be substituted into Eq. (8) to obtain: 

ṡ = − k̂1|s|1/2sign(s) − k2|s|psign(s) + ω

ω̇ = −
k̂3

2
sign(s) + φ

(23)  

where φ = |dξ(s, t)/dt| ≤ L(t − t0),ξ = М(H − Ĥ) is the TDE errors. 
Step 1: Consider |s0| > ε1, where ε1 > μ, μ > 0 are constants. The Eq. (8) can be written as: 

d|s(t)|
dt

=
ds(t)

dt
sign(s(t))

= − k1|s(t)|1/2
− k2|s(t)|p + ωsign(s(t))

≤ − k2|s(t)|p

(24) 

Fort > t0, considering that the sign(s(t))and sign(ω(t)) are opposite, that is ω(t)sign(s(t)) < 0. Eq. (24) can be solved as: 

|s(t)|1− p

1 − p
≤ − k2(t − t0)+

|s0|
1− p

1 − p
≤ − k2(t − t0) (25)  

then: 

|s(t)|p− 1
≤

1
k2(p − 1)(t − t0)

(26) 

As |s(t)| decrease to |s(t)| = ε1 for a time T1 ≤ 1
k2(p− 1)εp− 1

1
, which is the first term of Eq. (12). It can observe that this term is independent of the initial 

value. 
At the end of Step 1, |s(t)| = ε1 > 0. When t ∈ [t0, T1], the sign(s(t)) and sign(ω(t)) are opposite. |ω(t)|increases for t ∈ [t0,T1] and satisfy 

|ω(T1)| ≤ MT1 ≤ M 1
k2(p− 1)εp− 1

1
, where M is the maximum speed of ω(t). Based on the Eqs. (8–10), M can be expressed as: 
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M =
1
2

k̂3

(
1

k2(p − 1)εp− 1
1

)

+ L

=
1
2

[

2ε
(

η1̅̅̅
2

√ ⋅
1

k2(p − 1)εp− 1
1

)

+ 2εk2εp− 1/2
1

]

+ L

= ε
(

η1̅̅̅
2

√ ⋅
1

k2(p − 1)εp− 1
1

)

+ εk2εp− 1/2
1 + L

(27) 

If μ ≤ |s0| ≤ ε1, Step 1 is invalid. There will be no term 1
k2(p− 1)εp− 1

1
in Eq. (12). 

Step 2: To prove the stability of the system and facilitate the analysis of the Lyapunov theory, the following new vector is defined: 

z(t) = [z1(t), z2(t)]T =
[⃒
⃒
⃒s(t)|1/2sign

(
s(t)
)
,ω(t)

]T
(28) 

Obviously, sign(z1(t)) = sign(s(t)), Eq. (8) is written as: 

ż1(t) =
1

2|z1(t)|

(
− k̂1z1(t) − k2|z1(t)|2psign(z1(t)) + z2(t)

)

ż2(t) = −
k̂3

2|z1(t)|
z1(t) + φ

(29) 

Rewrite Eq. (29) into matrix form as follows: 

ż(t) = −
1

2|z1(t)|
A(z, t)z1(t) (30)  

where: 

A(z, t) =
[
−
(

k̂1 + k2|z1(t)|2p− 1
)

1

− (k̂3 − ψ) 0

]

φ = |dξ(s, t)/dt| =
1

2|z1(t)|
ψ(t)z1(t), |ψ(t)| ≤ 2L 

Note: If z1(t) and z2(t) converge to the neighborhood of the origin in fixed-time, s(t) and ω(t) also have the same convergence properties. 
Now consider defining the following Lyapunov function: 

V(z, k̃1, k̃3) = V0(z)+
1
2
k̃1 +

1
2

k̃3 (31)  

where k̃1 = k̂1 − k1,k̃3 = k̂3 − k3. 
V0(z) is defined as follows: 

V0(z) =
(
λ+ 4ε2)z1

2 + z2
2 − 4εz1z2 = zT Pz (32)  

where: 

P =

[
λ + 4ε2 − 2ε
− 2ε 1

]

The derivative of Eq. (32) can be expressed as: 

V̇0(z) = żT Pz + zT Pż =
1

2|z1(t)|
zT[AT(z)P + PA(z)

]
z

= −
1

2|z1(t)|
zT Q(z)z

(33) 

Q(z) is a symmetric matrix and expressed as: 

Q(z) = AT(z)P+PA(z) =
[

Q11 Q12
Q12 4ε

]

(34)  

where: 
Q11 = 2k̂1λ + 4ε(2εk̂1 − k̂3) + 2(λ + 4ε2)k2|z1(t)|2p− 1

+ 4εψQ12 = k̂3 − 2εk̂1 − 2εk2|z1(t)|2p− 1
− λ − 4ε2 − ψ 

To ensure that the Q(z) is positive definite, the adaptive gain k̂3 is: 

k̂3 = 2εk̂1 + 2εk2εp− 1/2
1 (35) 

Q(z) is the positive definite matrix, and the minimum eigenvalue satisfies μmin(Q) ≥ 2ε. 
Using Rayleigh’s inequality zTQ(z)z ≥ μmin(Q)‖z‖2, we can further obtain: 
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V̇0(z) = −
1

2|z1(t)|
zT Q(z)z ≤ −

ε
|z1(t)|

‖z‖2 (36) 

According to Rayleigh’s inequality, V0(z) ≤ μmax(p)‖z‖2 and V1/2
0 (z) ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
μmin(p)

√
‖z‖, V̇0(z)can be expressed as: 

V̇0(z) ≤ − βV1/2
0 (z),

where 

β = ε
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
μmin(P)

√

μmax(P)
(37) 

Applying theory 12 proposed from [44], The convergence time of Eq. (37) is estimate as: 

Tf (z(T1)) ≤
2V1/2

0 (z(T1))

β
(38) 

According to the end of Step 1, z1(T1) and z2(T1) are bounded: 

|z1(T1)| ≤ ε1
1/2, |z2(T1)| ≤ M

1
k2(p − 1)εp− 1

1
(39) 

so that: 

V0(z(T1)) ≤
(
λ + 4ε2)ε1 +

M2

k2
2(p − 1)2ε2(p− 1)

1

− 4εε1/2
1

M
k2(p − 1)εp− 1

1

(40) 

Therefore, the second term of Eq. (12) is obtained. The Eq. (8) converges to the neighborhood of origin, that is |z1| ≤ μ1/2or |s| ≤ μ and |z2| ≤ η(μ,L), 
where η =

∫ Tf
t0
(k̂3(s)/2 + L)ds; Theorem 2.1 is proved. 

Note: The defined Lyapunov function is continuous but it does not satisfy the Lipschitz condition because Eq. (31) is differentiable everywhere 
besides z = 0. Therefore, Lyapunov’s second method will be invalid. But, the convergent property can still be proved according to Zubov’s theorem 
applied in [45], which only needs the Lyapunov function is continuous. In the meantime, the theories shown in [45] apply to the case that the de
rivative of the Lyapunov function does not exist. Please refer to [46] for more details. 

The derivation of Eq. (41) is given: 

V̇(z, k̃1, k̃3) = V̇0(z)+ k̃1
˙̂k1 + k̃3

˙̂k3 (41)  

and furthermore: 

V̇(z, k̃1, k̃3) ≤ − βV1/2
0 (z) −

η1̅̅̅
2

√ |̃k1| −
η2̅̅̅

2
√ |̃k3| + k̃1

˙̂k1

+k̃3
˙̂k3 +

η1̅̅̅
2

√ |̃k1| +
η2̅̅̅

2
√ |̃k3|

(42) 

According to the following inequality: 
(
x2 + y2 + z2)1/2

≤ |x| + |y| + |z|

we can derive: 

− βV1/2
0 (z) −

η1̅̅̅
2

√ |̃k1| −
η2̅̅̅

2
√ |̃k3| ≤ − η0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

V(z, k̃1, k̃3)

√

(43)  

where η0 = min(β, η1,η2). Therefore, Eq. (42) can be rewritten as: 

V̇(z, k̃1, k̃3) ≤ − η0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

V(z, k̃1, k̃3)

√

+ k̃1
˙̂k1 + k̃3

˙̂k3

+
η1̅̅̅

2
√ |̃k1| +

η2̅̅̅
2

√ |̃k3|

(44) 

Since Eq. (8) is fixed-time convergence, the adaptive gains ̂k1 and ̂k3 are bounded. ∀t ≥ 0, ∃ positive constants k1,k3, such that k̂1 − k1 < 0and ̂k3 −

k3 < 0. Based on the above analysis, Eq. (44) can be simplified as: 

V̇(z, k̃1, k̃3) ≤ − η0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(z, k̃1, k̃3)

√

+ ζ (45)  

where： 

ζ = − |̃k1|

(
˙̂k1 −

η1̅̅̅
2

√

)

− |̃k3|

(
˙̂k3 −

η2̅̅̅
2

√

)
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Case 1. Suppose that for t ≥ 0, |s| > μ. According to Eq. (9), we can be obtain: 

˙̂k1 =
η1̅̅̅

2
√ , ζ = − |̃k3|

(
˙̂k3 −

η2̅̅̅
2

√

)

(46) 

ε =
η2
2η1

is selected. The differential of Eq. (10) can be expressed as: 

˙̂k3 = 2ε ˙̂k1 = 2⋅
η2

2η1
⋅

η1̅̅̅
2

√ =
η2̅̅̅

2
√ (47) 

Therefore, ζ = 0, Eq. (43) becomes: 

V̇(z, k̃1, k̃3) ≤ − η0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(z, k̃1, k̃3)

√

(48) 

V̇(z, k̃1, k̃3) is negative definite and the system is asymptotically stable. 

Case 2. Suppose that |s| ≤ μ, k̂1is calculated as follows: 

˙̂k1 =

⎧
⎨

⎩

−
η1̅̅̅

2
√ if k̂1 > kmor|s| > μ

0if k̂1 ≤ kmand|s| ≤ μ
(49)  

with: 

ζ =

⎧
⎪⎨

⎪⎩

2|k̂1 − k1|
η1̅̅̅

2
√ if k̂1 > kmor|s| > μ

|k̂1 − k1|
η1̅̅̅

2
√ if k̂1 ≤ kmand|s| ≤ μ

(50) 

In view of Eq. (45), the sign of Lyapunov function is indefinite. However, the validity of Eq. (50) only holds for a period of time. Because the 
adaptive gains k̂1 and k̂3 are decreased, |s| will gradually become larger than μ. Once |s| is larger than μ, Case 1 holds again. The system is still 
asymptotically stable, so on. 

By combining |s| ≤ μ with Eq. (7), we can obtain: 

s = ė+ α1Dλ1 [sig(e)σ1 ] +α2Dλ2 − 1[sig(e)σ2 ], |s| ≤ μ (51) 

Eq. (51) can be rewritten in the following two forms: 

ė + α1Dλ1 [sig(e)σ1 ]

+
(

α2 − s
(
Dλ2 − 1[sig(e)σ2 ]

)− 1
)

Dλ2 − 1[sig(e)σ2 ] = 0 (52)  

ė +
(

α1 − s
(
Dλ1 [sig(e)σ1 ]

)− 1
)

Dλ1 [sig(e)σ1 ]

+α2Dλ2 − 1[sig(e)σ2 ] = 0
(53) 

If α2 − s(Dλ2 − 1[sig(e)σ2 ])
− 1

> 0holds, Eq. (52) is in the same form as Eq. (7). The system will converge to the FONTSM manifold (see Eq. (7)) until 
⃒
⃒Dλ2 − 1[sig(e)σ2 ]

⃒
⃒ ≤ α− 1

2 μ. Select qof Lemma as q = ∞. 

esssup
⃒
⃒Dλ2 − 1[sig(e)σ2 ]

⃒
⃒ ≤ Uesssup|e|σ2 (54)  

where esssup(⋅)represents the essential maximum value. 
Substituting

⃒
⃒Dλ2 − 1[sig(e)σ2 ]

⃒
⃒ ≤ esssup

⃒
⃒Dλ2 − 1[sig(e)σ2 ]

⃒
⃒ into Eq. (54): 

⃒
⃒Dλ2 − 1[sig(e)σ2 ]

⃒
⃒ ≤ Uesssup|e|σ2 (55) 

A bounded time-varying variable ϖ ≥ 1 is introduced to make Eq. (55) become an equality. 
⃒
⃒Dλ2 − 1[sig(e)σ2 ]

⃒
⃒ = ϖ− 1Uesssup|e|σ2 (56) 

Substituting
⃒
⃒Dλ2 − 1[sig(e)σ2 ]

⃒
⃒ ≤ α− 1

2 μinto Eq. (56) can further obtain: 

ϖ− 1Uesssup|e|σ2 ≤ α− 1
2 μ (57) 

Therefore, the error e will converge as follows: 

|e| ≤ |e|max ≤
(
α− 1

2 μϖU− 1)1/σ2 (58) 

Similarly, we have 
⃒
⃒Dλ1 [sig(e)σ1 ]

⃒
⃒ ≤ α− 1

1 μ. Combining Eq. (7) and 
⃒
⃒Dλ2 − 1[sig(e)σ2 ]

⃒
⃒ ≤ α− 1

2 μ, we can obtain: 

|ė| ≤ |s| +
⃒
⃒α1Dλ1 [sign(e)σ1 ]

⃒
⃒+
⃒
⃒α2Dλ2 − 1[sign(e)σ2 ]

⃒
⃒ = 3μ (59) 

To sum up, the stability proof of the closed-loop system has been completed. 
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