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Table 1 Properties of piezoelectric stack
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Table 2 Parameter identification results

. Sl
v=1 V=2
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Table 3 Parameter identification results of

hysteresis inverse model
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Experimental study on parallel control of axial dual-piezoelectric stack actuator
ZHENG Shufeng, ZHU Yuchuan®, LING Jie, LIU Chang, LIN Wen
(College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract: Compared with common piezoelectric stack actuators, the dual-piezoelectric stack actuator exhibits
displacement amplification functionality, but suffers from poor positioning accuracy due to the inherent hysteresis
nonlinearity of piezoelectric materials. To reduce the hysteresis nonlinearity of dual-piezoelectric stack actuators, an
improved Prandtl-Ishlinskii(PI) dynamic hysteresis model is established and the related parameters are identified.
Then, an output displacement allocation strategy and parallel control scheme of the dual-piezoelectric stack actuator
are proposed. Based on the inverse hysteresis model, the feedforward-feedback compound control is examined by
experiments, and compared with the linear active disturbance rejection control (LADRC) scheme which is
independent on the inverse hysteresis model. The control algorithm is validated on the Links-RT real-time control
system. Experimental results indicate that the feedforward-feedback compound control performs the best within the
frequency range of 1~200 Hz. When the tracking signal frequency reaches 200 Hz, the root mean square error and
maximum absolute error are 0.454 4 um and 1.95 pum respectively, much lower than those of open loop control
(4.369 6 pm and 6.08 um).

Keywords: dual-piezoelectric stack actuator; hysteresis model; parameter identification; feedforward-feedback

compound control; linear active disturbance rejection control

Received: 2021-07-30; Accepted: 2021-10-29; Published Online: 2021-11-09 11:45

URL: kns.cnki.net/kems/detail/11.2625.v.20211108.1438.001.html

Foundation items: National Natural Science Foundation of China (51975275); Science and Technology Planned Project of Jiangsu Province of China
(BE2021034); Natural Science Foundation of Jiangsu Provice of China (BK20210294)

* Corresponding author. E-mail: meeyczhu@nuaa.edu.cn



