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A Novel Two-Stage Constant
Force Compliant Microgripper
The manipulating objects of the micron scale are easily damaged, hence the microgrippers,
the key components in micro manipulating systems, demand precise force control, plus min-
iaturized size. Consequently, the constant force microgrippers, generally lack the ability to
fit different sizes. To avoid the overload damage, apply multi-size microparts and simplify
the control method, a novel two-stage compliant constant force microgripper is proposed in
this paper. Based on the negative stiffness effect, this gripper is connected in parallel with a
two-stage negative stiffness module and a positive stiffness module. Then, the elliptic inte-
gral method and the pseudo-rigid-body method are both employed to derive the kinetostatic
and dynamic performances. Finally, the analytical results are validated. It is observed that
two-stage constant forces of 1.33 N in 305.6 μm and 1.11 N in 330.8 μm are acquired.
[DOI: 10.1115/1.4048217]
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1 Introduction
During the last decades, rapid development has been witnessed in

the field of robotic manipulation. To deal with the trend toward min-
iaturized target objects, automated pick-and-place operation with
high precision attracts many efforts to develop efficient micro-
manipulators [1–5]. Due to the merits of the flexibility to different
shaped objects, fast responses with ultrahigh accuracy and low cost,
piezoelectric actuated microgrippers have been widely used in
various applications, including but not limiting to aerospace [6],
biomedical engineering [7,8] and micro electromechanical
systems [9–12]. In general, microgrippers can be roughly divided
into two categories: (i) rigid type and (ii) compliant type. Compared
with the former, compliant grippers have the advantages of no wear,
no backlash, no friction, no assembly, and no lubrication [13]. On
the other hand, the integrated structure that reduces the overall
size [14] is also one main reason why compliant grippers are
much more welcome in micromanipulations.
A challenge of compliant grippers for micromanipulations lies in

that target objects on themicron scale are quite sensitive to changes in
gripping force due to scale effect and adhesion effect [15]. It is
extremely important to control the force accurately in gripping
stroke in case of damage to clamping objects. For some instances,
(i) the assembly of optical fibers requires gripping stroke of
100 μm and gripping force about 300 mN [16]; (ii) the microinjec-
tion of a custom-built cell requires gripping force less than 71 mN
after 4.4 mm [17], etc. Consequently, two ways to realize precise
grasp while maintaining objects undamaged are developed. One
method is installing the displacement and force sensors. By this,
the gripper can detect and control the contact force through well-

designed controllers [18]. However, it will meanwhile increase the
overall size, improve the structure complexity, and bring signal pro-
cessing burden. Another method is designing constant force mecha-
nisms (CFMs). A gripper can provide near-constant force in
particular gripping stoke through well-designed CFMs. This will
protect the object from overload without additional sensors or com-
plicated force control algorithms [19]. Hence, the grippers based on
CFMs have broader applications and preferable prospects.
Nowadays, abundant studies on single-stage constant forcemicro-

grippers have emerged which can be classified in terms of parallel
and series. For the parallel type, a negative stiffness module and
a positive stiffness module can be connected in parallel to acquire
a zero stiffness in a special stroke. Parallel microgrippers with a
CFM have been proposed in Refs. [20–23]. In these prototypes, an
inclined beam and a straight beam are fixed and guided in the same
end. This design can protect micro objects from overloading.
However, they can merely be applied to clamp a particular kind of
objects in a short range.Moreover, additional stress for parallel struc-
ture and large size of constant force module also restrict the applica-
tions of this type. For the series type, the deformations are delivered
from one module to another. Series microgrippers with CFMs are
realized by connecting single inclined or straight beams end to end
in Refs. [17,24]. Another series type is using beams with particular
continuous curves as in Refs. [25,26]. The curve structure creates
less additional stress when clamping objects compared with parallel
types. However, the complicated curve increases the complexity of
fabrication and maintainability. On top of that, both the parallel
and series microgrippers with single-stage constant force are not
applicable for grasping multi-size objects without damage as cons-
tant contact force within only one specific stroke can be guaranteed.
To implement complicated operations such as microassembly of
multi-size micro-electro-mechanical system (MEMS) parts, micro-
grippers with more than one constant force stage need to be
investigated.
Some multi-stage CFMs are proposed in Refs. [27–33], such as

adjustable and unadjustable multi-stage constant force mechanisms.
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The constant force can be adjusted through a changeable preloading
displacement so that multi-stage constant force can be indirectly
realized in Refs. [27–29]. By assembly or disassembly of the cons-
tant force module, adjustable CFMs are obtained in Refs. [30,31].
Although the designs in Refs. [27–31] have simple structures and
large strokes, the operating efficiency is low and the entire dimen-
sion is relatively large, which cannot be applied into microgrippers.
A module that is composed of fixed-guided beams with multi
negative stiffness in nonoverlapping ranges connected with a posi-
tive stiffness module has been developed in Refs. [32,33] to synthe-
size unadjustable multi-stage CFMs. This structure has better
switching continuity, efficiency, flexibility, and integrability than
those in Refs. [27–31]. Nevertheless, kinetics/dynamics modeling
and analyzing are difficult because of the operating principle and
complicated structure. Hence, the development of unadjustable
multi-stage constant force microgrippers is hampered by optimiza-
tion of parameters design (i.e., the particular values of stiffness and
critical positions of buckling) which can be derived by the analytical
model.
With respect to the modeling method for microgrippers with

compliant mechanisms, a large amount of methods are developed
in Refs. [34–44]. Given that the chain algorithm, the finite
element method, etc. in Refs. [34–38] possess complexity, immatu-
rity, and high sensitivity of loading conditions, two main methods
can be considered, including the pseudo-rigid-body method
(PRBM) [39–41] and elliptic integral method (EIM) [42–44].
PRBM is effective by approximating a flexure to a rigid-body
mechanism. However, this deteriorates the accuracy of transforma-
tion so that it cannot be directly used for large deformation. EIM
based on Bernoulli Euler beam theory is a classical mathematical
tool to deal with large deformation whose characteristics are pre-
dicted accurately on account of differential equations. Compared
to PRBM, EIM performs better in accuracy but brings great difficul-
ties to design with its computing complexity, especially in thin
beams with complex shapes.
The demands for conducting overload protection, enhancing

multi-size adaptability, and improving control simplicity need to
be taken into consideration comprehensively in the mechanism
design. Motivated by the aforementioned essential issues, this
paper aims to devise a two-stage constant force microgripper
(TSCFM) in which the constant force switching is carried out con-
tinuously during the gripping process for overloading protection. In
this work, a two-stage CFM is realized through combing a two-
stage negative stiffness module with a linear positive stiffness
module through parallel connection. Compared with the constant
force designs in Refs. [20–33], the proposed TSCFM has a series
of advantages as follows: (i) the output performance of the two-
stage constant force make the TSCFM more suitable for the micro-
assembly of multiple parts than the single-stage ones in Refs. [20–26];
(ii) the continuous switching between two-stage constant forces in
the gripping process makes microoperations more efficient than
Refs. [27–31]; and (iii) the integrated structure contributes to the
miniaturization of the overall size and flexibility of operation as
well. Considering inherent bistability and nonlinearity, the kineto-
static model of the negative stiffness module is firstly established
using EIM. The kinetic and static model of the leverage mechanism
is then established by PRBM. On the basis of these, the kinetostatic
and dynamic models of TSCFM are established by the hybrid
method of EIM and PRBM. Hereto, structure parameters can be
optimized using the established model of the TSCFM. The main
contributions of this paper are as follows: (i) a two-stage CFM by
means of the parallel connection between multi-stage negative
and positive stiffness modules is developed to adapt to manipula-
tions of objects of various sizes and (ii) a hybrid EIM and PRBM
model is established for the proposed TSCFM to optimize the struc-
ture parameters.
The remainder of this paper is organized as follows. The design

principle and the proposed mechanism of the gripper in introduced
in Sec. 2. Structure parameters and analytical results are derived in
Sec. 3 based on kinetostatic and dynamic modeling by EIM and

PRBM. The performance is verified through simulations using a
finite element method (FEM) in Sec. 4. Finally, Sec. 5 concludes
this paper.

2 Design of Two-Stage Constant Force Microgripper
2.1 Working Principle. Conventional CFMs are connected

by rods, cams, springs, and so on through rigid hinges, whereas
TSCFM proposed in this paper is composed of flexure beams,
rigid rods, and compliant hinges based on the negative stiffness
effect. The bistable state is shown during buckling deformation of
fixed-guided beams with inclined angles, called the first buckled
mode and the second buckled mode. The transition of buckled
modes correspond to the change of stiffness as shown in Fig. 1,
where the x-axis refers to the normalized displacement in the
x-direction, the y-axis refers to the normalized displacement in the
y-direction, boundary line separates the first and second buckled
modes and γ refers to the initial angle of the fixed-guided beam.
Determined by the position of the guided end, the first and the

second buckled modes correspond to the white and blue areas,
respectively. The changing process of stiffness is as follows. Ini-
tially, the beam with the initial angle of γ receives a vertical

Fig. 1 The transition of buckling modes during the deformation
of fixed-guided beam

Fig. 2 The proposed two-stage constant force microgripper
(TSCFM)
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displacement, increases the stored energy, and shows positive stiff-
ness until the deformation reaches the boundary line the first time.
This critical buckling position is called the initial one. And then,
negative stiffness appears with the decrease in energy until the
deformation reaches the boundary line the second time. This critical
buckling position is called the final one. After that, the beam starts
storing energy and shows positive stiffness again. Only if the neg-
ative stiffness beams are connected with the positive stiffness mech-
anism, the zero-stiffness mechanism (i.e., CFM) will be derived.
Based on negative stiffness effect, the proposed TSCFM is

shown in Fig. 2, where the TSCFM is actuated by a voice coil
motor (VCM). The design objective consists in performing two-
stage constant force in two strokes continuously, which could
have been ideally realized by the parallel connection of bistable
beam module (BBM) 1 and BBM 2. However, it stands for the
supremely harsh requirement for structure parameters since the
stiffness performed in two strokes may be unequal or nonzero com-
monly. As a consequence, a more realizable design scheme is pro-
posed below.
As demonstrated in Fig. 3, BBM 1 and BBM 2 are connected in

parallel to achieve parallel connection I whose force–displacement
curve requires a same negative stiffness in two nonoverlapping
stokes (s1, e1) and (s2, e2). Then parallel connection I and positive
stiffness module compose parallel connection II which shows
zero stiffness in these strokes. Hence, (s1, e1) and (s2, e2) are the
two constant force strokes; (0, e2) is the effective stroke where it
is no danger of overload damage to the gripping objects in structure
sizes below e2.
The mechanism design puts forward the extremely high request

to the stiffness performances of which the relationship is exhibited
as

KI1 = KI2 = −K p (1)

where

KI1 = k11 + k21
KI2 = k12 + k22

(2)

KI1, k11, and k21 are the stiffnesses of parallel connection I, BBM 2,
and BBM 1 in (s1, e1); KI2, k12, and k22 are the stiffnesses of parallel
connection I, BBM 2, and BBM 1 in (s2, e2); and Kp is the linear
stiffness of the positive stiffness module.
Parallel connection II shows zero stiffness in two nonoverlapping

strokes, which means two-stage constant force in a continuous grip-
ping process is achieved.

2.2 Mechanism Design. As shown in Fig. 4, the TSCFM is
composed of BBM 1 (beam 1(a), beam 1(b), and shuttle 1), BBM
2 (beam 2(a), beam 2(b), and shuttle 2), leverages, flexure hinges,
etc. In order to guarantee guidance and required stiffness character-
istics at the same time, BBMs 1 and 2 are both composed of two
layers of fixed-guided beams symmetrically. The leverages
connect BBM 1, BBM 2, and the base by notched circular flexure
hinges whose flexure parts are so short and thin that the elastic
restoring force is very small during deformation. Furthermore,
two leverages of the same length and shuttles form a parallelogram
mechanism to get the flat shift of the output end. Therefore, the jaws
can clamp parallelly rather than rotationally to ensure better stability
and adaptability, which inevitably sacrifices certain amplifying
ratio.
Besides, the parallelogram mechanism brings inevitable parasitic

motion. Shuttle 2 will have a small bias due to the constraints of the
fixed-guided beams. We adopt the symmetrical arrangement with
two layers to suppress it.
It is necessarily acknowledged that the input end and output end

are, respectively, shuttle 1 and shuttle 2. In the whole effective
stroke where the crisp objects have no risk of overloading
damage, leverages have the ability not only to amplify the input dis-
placement of shuttle 1 but also to serve as a positive stiffness
module. Although the leverages bring extra displacement in the
x-axis inevitably, the parallelogram mechanism still plays an impor-
tant role because the amplified displacement of shuttle 1 is the pre-
condition for design. With an appropriate amplifying ratio, the
initial and final buckling positions of BBM 1 are e1 and e2 of the
output displacement; the initial and final buckling positions of
BBM 2 are s1 and s2 of the output displacement; their relations
need to be: 0 < s1 < e1 < s2 < e2. Since force is inversely proportional
to displacement in (e1, s2), (s1, e1) and (s2, e2) as two constant force
ranges show two different values of the force.

Fig. 3 Force to displacement curves of TSCFM: (a) two-stage
negative stiffness and (b) two-stage zero stiffness Fig. 4 The top view of TSCFM
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3 Modeling and Analysis
In this section, the elliptic integral method and the pseudo-rigid-

body method are both introduced. Considering the bistability and
nonlinearity of fixed-guided beams, the elliptic integral method is
employed to deal with large deformation for solving output force
performances. The pseudo-rigid-body method is utilized in kine-
matic and dynamic modeling, because the positions of the “rigid”
parts (i.e. the shuttles, the levers, etc.) are the main concerns in kine-
matic modeling, and their mass in the dynamic modeling is much
greater than that of the flexible parts.

3.1 Kinetostatic Modeling

3.1.1 Kinetostatic Model of the Fixed-Guided Beam. An ana-
lytical model is established to derive the vertical force reaction in
the guided end corresponding to input displacement. In that case,
it is divided into the bending model and deflection model.
A. Bending model
The length L of a fixed-guided beam is assumed to be invariable

in the bending model. According to the Bernoulli Euler beam
theory, the moment in the beam at a random point P as shown in
Fig. 5 can be expressed as

EI
dθ
ds

=M − Fx sin β + Fy cos β (3)

where E is the elasticity modulus of the material; I is the inertia
moment of the bistable beam; θ is the rotational angle of the
point P on the beam; x and y are the horizontal and vertical displa-
cement of this point; F is the force reaction on the guided end, β is
the angle between F and the x-axis.
For uniform expression, dx and dy are expressed as

dx = ds cos θ
dy = ds sin θ

(4)

After the derivative and integration transformation, Eq. (3) can be
expressed as

EI
dθ
ds

( )2

= − 2F cos θ − β
( )

+ 2R (5)

where R is a constant produced by the integral transformation.
According to geometric relation conversion, it can be sorted out

as

L =
∫L
0
ds

bx =
∫L
0
cos θ ds

by =
∫L
0
sin θ ds

(6)

where bx and by are the horizontal and vertical coordinates of the
guided end due to bending.
Substituting Eq. (5) into Eq. (6), length L with respect to θ is

L =
∫ ����������������������

EI

−2Fcos(θ − β) + 2R

√
dθ (7)

where θ does not change monotonically from the fixed end to the
guided end. The mapping from θ to deformation being hardly estab-
lished, the incomplete elliptic integrals of the first and second kind
are involved as

F(h, φ) =
∫φ
0

dδ��������������
1 − h2 sin2 δ

√

E(h, φ) =
∫φ
0

��������������
1 − h2 sin2 δ

√
dδ

(8)

where

h =

�������
R + F

2F

√
φ = arcsin

1
h
cos

(θ − β)
2

( ) (9)

The value of φ ranges from φ1 to φ2. It can be understood as a
variable that changes monotonically from the fixed end to guided
end. It is observed that the inflection point of the beam appears
once φ is an odd multiple of π/2.
The trigonometric substitution of above formulas gives

dθ = ±
2h cosφ��������������
1 − h2 sin2 φ

√ dφ (10)

Then, whether it is positive or negative should be discussed in
two modes as Fig. 6.
When φ ranges from φ1 to π/2 in the first mode, cosφ and dθ/dφ

are both positive; and when it ranges from π/2 to φ2, they are both
negative. Similarly, these values in the second mode can be ana-
lyzed, so the result is

dθ =
2h cosφ��������������
1 − h2 sin2 φ

√ dφ (11)

Fig. 5 Variables diagram of fixed-guided beam
Fig. 6 The derivative of θ with respect to φ in: (a) first mode and
(b) second mode
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Therefore, the x- and y-coordinates of the guided end due to
bending are

bx =

������
EIL2

F

√
cos β F̂ − 2Ê

( )
− 2h sin β cosφ2 − cosφ1

( )[ ]
by =

������
EIL2

F

√
sin β F̂ − 2Ê

( )
− 2h cos β cosφ2 − cosφ1

( )[ ] (12)

where

Ê = E(h, φ2) − E(h, φ1)

F̂ = F(h, φ2) − F(h, φ1)
(13)

B. Deflection model
Since the boundary conditions cannot be satisfied only by the

bending model, the deformation of axial deflection must be consid-
ered. Though often used for small deformation, Hooke’s Law can
be adapted to this condition that the deformation due to bending
is much larger than deflection. The axial strain of the fixed-guided
beam is

ε =
F cos(θ − β)

EA
(14)

where A is the sectional area of the fixed-guided beam. In the same
manner as the bending model, the normalized x- and
y-displacements of the guided end due to axial deflection are

Dx =

�����
FI

EA2

√ ∫φ2

φ1

2h2 sin2 φ − 1
( )

cos θ dφ

Dy =

�����
FI

EA2

√ ∫φ2

φ1

2h2 sin2 φ − 1
( )

sin θ dφ

(15)

Finally, the x- and y-coordinates of the guided end are

lx = bx + Dx

ly = by + Dy
(16)

C. The determination of boundary line
Additionally, it is necessary to draw a boundary line to ascertain

the buckled modes previously. If the beam were in the first buckled
mode, the relationship between φ1 and φ2 is as Eq. (17) according to
boundary condition that θ of both ends is zero.

φ1 + φ2 = π (17)

Otherwise, it gives

φ2 − φ1 = 2π (18)

Obviously, the value of φ1 is −π/2 when the guided end is on the
boundary line. Combined with Eq. (9), the value of hwith respect to
β is as

h = − cos
β
2

(19)

where β corresponds to the angle between the line from the fixed
end to a point on the boundary line and the x-axis, ranging from
π to 3π/2. The boundary line can be figured out by taking the direc-
tional angle of force reaction β as the independent variable and the
position of the guided end as the dependent variable. If the actual
coordinates of the guided end were below or above the boundary
line, it is in the first buckled mode or second buckled mode
separately.
D. The solution to output force performance
The computing method to solve analytical model is shown in

Fig. 7.Given the input displacement d, then the actual coordinates

of the guided end xd and yd can be figured out as

xd = L − d sin γ
yd = d cos γ

(20)

The theoretical coordinates lx and ly are available by adjusting the
values of h and β until the theoretical coordinates coincide with the
actual ones. If their values were equal, the force reaction corre-
sponding to given variables may be expressed as

F =
EI

L2

∫φ2

φ1

dφ��������������
1 − h2 sin2 φ

√( )2

(21)

Fig. 7 The computing method of F−d curve of the fixed-guided
beam

Fig. 8 The pseudo-rigid-bodymodel of the leveragemechanism
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3.1.2 Static Model of Leverage Mechanism. In order to make
the combined modeling of TSCFM complete, the
pseudo-rigid-body model of the leverage mechanism is shown in
Fig. 8 where the energy relation can be expressed as

F1yi + Thθhi = FLyo (22)

where F1 and FL are the external forces on the leverage mechanism,
Th refers to the required moment for deformation of flexure hinges,
θhi refers to the rotational angle of each hinge, and θh2 is equal
to θh1.
Due to the parallel relation between O1B and O2C, the removed

BC (i.e., shuttle 2) is always perpendicular to the x-axis. Given that
AA′ is the input displacement, the amplifying ratio is

α =
do
di

=
yo
yi
=
L5
L6

(23)

In addition, the inevitable displacement of shuttle 2 in the x-axis
is

xo = L5(1 − cos θh1) (24)

The stiffness of single and double notched circular flexure hinges
in Fig. 9 can be figured out as

khi =

�����������
2nE2b2T5

i

81π2Ri

√
(25)

where n of single and double notched hinges are 1 and 2, respec-
tively. It is easily seen that Ti plays a greater part for the value of
stiffness than Ri. The rotational angle of leverage is small enough
to estimate FL as

FL =
F1

α
+
do
L25

∑5
i=1

khi (26)

Since BBM 1, BBM 2, and leverage mechanism are connected in
parallel, the total force reaction of the combined model is

Fout = FL + F2 (27)

where F2 is the force reaction of BBM 2 whose values have been
figured out by EIM.

3.2 Dynamic Modeling. The ratio of the shuttle mass over the
beam mass determines whether the mass of fixed-guided beams sig-
nificantly affects the natural frequencies. If the ratios are less than
106, the beam mass will be considered in dynamic modeling conse-
quently. Moreover, the natural frequency decreases with increasing
ratio, which should also be fully thought over in design.
To obtain the dynamic performance of the TSCFM, the equiva-

lent stiffness Ke and mass Me should be figured out since the gov-
erning differential equation is

Meẍ + Keẋ = Fout (28)

Given the expression of output force Fout as Eq. (27), the equiv-
alent stiffness Ke is easily computed as

Ke = lim
t�0

Fout(t)
do(t)

(29)

The pseudo-rigid-body model of the TSCFM is shown in Fig. 10
by PRBM, where the parasitic motion of shuttle 2 produced by the
lever is assumed not to exist.In fact, owing to the deformation of
fixed-guided beams and flexure hinges, the overconstraint will not
appear during the clamping process. Hence, the kinetic energy
can be expressed as

1
2
Meḋ

2
o =

1
2

( 1
α
ms1 + ms2 +

∑4
j=1

1 − ξ
2α

mbj

+
∑4
k=1

1 − ξ
2

mbk

)
ḋ
2
o +

∑4
j=1

ξ
2
Jbjθ̇

2
bj

+
∑4
k=1

ξ
2
Jbk θ̇

2
bk + Jlθ̇

2
l +

∑5
i=1

1
2
Jhiθ̇

2
hi (30)

where ḋo is the velocity of shuttle 2,msi is the equivalent mass of ith
shuttle, mbj and Jbj are the mass and inertia moment of the jth fixed-
guided beam of BBM 1, mbk and Jbk are the mass and inertia
moment of the kth fixed-guided beam of BBM 2, Jl is the inertia
moment of leverage, Jhi is the inertia moment of the ith notched
hinge, value of ξ is 0.85. Furthermore, it gives

θ̇bj =
ḋo

αξLbj
, θ̇bk =

ḋo
ξLbk

θ̇l = θ̇1 = θ̇2 =
ḋo
L5

(31)

Then, the natural frequency of the first mode under the analytical
method may be expressed as

f1 =
1
2π

����
Ke

Me

√
(32)

3.3 Sensitivity Analysis and Parameter Optimization. A
series of F–d curves of the fixed-guided beams are exhibited as
Fig. 11 to analyze the parametric sensitivity of output force perfor-
mance, including length L, width t, thickness B, and initial angle γ.
The significative properties contain the buckled ranges, the values
of stiffness, etc. Then, each variable is changed with the constant

Fig. 9 The notched circular flexure hinges: (a) single notched
hinge and (b) double notched hinge Fig. 10 The pseudo-rigid-body model of TSCFM
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values of other variables to identify the sensitivity of every
parameter.

– The larger the L is, the larger the range of negative stiffness
is, and moreover, the initial position of buckling, the value
of stiffness and the max stress are all inversely proportional
to L.

– The effects on the initial position of buckling and the range of
negative stiffness by t are more distinct than the value of neg-
ative stiffness, whereas t does not have as much varying range
as L because of the yield limit.

– It is worth noting that the range of negative stiffness becomes
smaller and smaller as the inclined angle decreases, which cor-
responds to the relationship between the boundary line and the
actual displacement curve in Sec. 2.1. When the inclined angle
is zero (i.e., the straight beam), the curve will not appear neg-
ative stiffness at all.

– In contrast, B has nothing to do with critical buckling positions
and ranges, while only making a difference to values of
stiffness.

The length and amplifying ratio of the lever are limited by the
hinge’s deformable stroke. Under the condition that the amplifying
ratio meets the design requirements as shown in Fig. 3, the length of
the lever should be as small as possible to facilitate miniaturization
of the overall size as well.

3.4 Parameters and Theoretical Results. The parameters of
AL-7075 are shown in Table 1. The structure parameters as tabu-
lated in Table 2 are under selection to derive a satisfactory output
force–displacement performance.
Li, ti, and ξi (i= 1, 2, 3, 4) refer to the length, in-plane width, and

initial angle of the fixed-guided beam 1(a), 1(b), 2(a) and 2(b); Lj
refers to the length of the jth leverage (j= 5, 6); Tk and Rk refer to
the in-plane width and the radius of the kth notched circle (k= 1,
2); Bf, and Br refer to the thickness of flexible parts and rigid parts.

Then, the analytical results can be obtained as follows. The first-
state constant force is 1.24 N ranging from 235.5 to 588.7 μm and
the second one is 1.04 N ranging from 902.8 to 1295.2 μm with the
standard deviation of 0.02 N.
In addition, the ratios of shuttle mass over beam mass of BBM 1

and BBM 2 are 3.63 and 5.69, respectively, therefore the natural fre-
quency of the first mode is calculated as 356.21 Hz.

4 FEA Simulation Study
4.1 Static Analysis Results

4.1.1 The Static Performances. In this section, the FEA
method is used to validate the analytical model of the TSCFM.

Fig. 11 The parametric sensitivity of fixed-guided beams: (a) L, (b) t, (c) γ, and (d ) B

Table 1 Material parameters of the proposed TSCFM

Parameter Value

Density 2830 kg/m3

Young’s modulus 71 GPa
Poisson’s ratio 0.33
Tensile yield strength 455 MPa

Table 2 Structure parameters of the proposed TSCFM

Symbol Value Symbol Value Symbol Value

L1 (mm) 9 t1 (mm) 0.2 ξ1 (deg) 1
L2 (mm) 10 t2 (mm) 0.2 ξ2 (deg) 5
L3 (mm) 22 t3 (mm) 0.18 ξ3 (deg) 1.8
L4 (mm) 22.5 t4 (mm) 0.2 ξ4 (deg) 4.5
L5 (mm) 72 L6 (mm) 46 Bf (mm) 1
R1 (mm) 1 R2 (mm) 1 Br (mm) 2
T1 (mm) 0.2 T2 (mm) 0.2
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According to the static structure analysis with the option “on” of
“large deflection,” the amplifying ratio under an input displacement
of 0.85 mm is approximately 1.40 as shown in Fig. 12(a). The
reason why simulation result is smaller than the theoretical one is
that the small deformation of leverages and the extension of
flexure hinges were ignored in analytical modeling. The in-plane
bias and out-plane deviation of the shuttle 2 (output end) are both
kept to very small values as shown in Fig. 12(b) and Fig. 12(c).
In addition, the stress performance of TSCFM is conducted to
detect whether the stress exceeded the yield strength. The max
value of equivalent stress is 223.41 MPa, which indicates that no
plastic deformation occurred during the gripping process.
Then, the force–displacement curve of the TSCFM as shown in

Fig. 13 can be derived. It is observed that the first-stage constant
force is 1.33 N ranging from 150.4 to 456.1 μm and the second
one is 1.11 N ranging from 799.9 to 1130.7 μm under FEA simula-
tion. The analytical results are better than FEA ones whose compar-
ison to the former is summarized in Table 3. Apparently, the
deviations of constant force performances are caused by one of
the amplifying ratio mainly.

4.1.2 The Simulation Comparison With and Without Parasitic
Motion. As shown in Fig. 12(b), in shuttle 2 (output end) the
bias of 0.0019 deg appears due to the comprehensive result of
levers’ parasitic motion and fixed-guided beams deflection. In
order to analyze the influence of asymmetrical deformation of the
fixed-guided beams on the output force performance, a simulation
without parasitic motion is conducted by applying a frictionless
support on the side of shuttle 2. However, the constraint setting
forces the flexure hinges to stretch and deviate from the expected
stiffness performance. The output force performance of the
gripper cannot be used as a comparison term. Therefore, the equiv-
alent stress of an element on the guided end is regarded as a better
choice for comparison as shown in Fig. 14.
Compared with Fig. 12(a), there is no obvious asymmetry in the

fixed-guided beams in Fig. 14(a). The displacement amplifying
ratio is significantly greater as well. It is observed from Fig. 14(b)
that the stress variation trend at the guided end is steeper with par-
asitic motion, making the buckling range smaller. Its value of the
stress is larger overall, too. In spite of this, the adverse impact of
output performance is pretty small since the angle of bias is only
0.0019 deg.

4.2 Modal Analysis Results. Lastly, the modal analysis is
conducted to validate the dynamic model of TSCFM. The natural
frequency in the first mode of vibration whose total deformation
nephogram is displayed in Fig. 15 is 277.84 Hz under FEA

Fig. 12 (a) Total deformation nephogram of TSCFM in static
structure analysis, (b) the in-plane bias of output end, and
(c) the out-plane deviation

Fig. 13 Performance of TSCFM under FEA simulation: (a) relation between input and output displacement
and (b) Comparison of F−d curves under FEA simulation and analytical modeling
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simulation. It is observed that the warps of BBM 2 and shuttle 2 are
the main deforming portion in the first mode. Compared to the FEA
results, the analytical one has the deviation of 28.2% whose details
are tabulated in Table 3.

5 Discussions
5.1 Comparisons of Modeling Methods. Recently, more

research and application of the chain algorithm are being done
[45]. For instance, Ma and Chen [46] proposed the beam constraint
model (BCM) by splitting a fixed-guided beam into two elements
and assembling their equations for the final solution. For ease of
comparison, the parameters of the selected fixed-guided beam are
shown in Table 4. For the hybrid method we proposed, the BCM
and the finite element analysis are all employed respectively to
obtain the boundary line of this beam. The comparisons of analyt-
ical results and FEA results are tabulated in Table 5, where the
boundary positions by BCM are given in Ref. [46] and the boundary
positions by our hybrid method are shown in Fig. 16.
Obviously, the chain algorithm can get more accurate analytical

results, while the elliptic integral method is still more simple to
understand and very useful in stiffness design. Although different
loading conditions have great effect on the final result by chain
algorithm [1], it can be seen that the chain algorithm has a consid-
erable prospect for modeling method optimization.

5.2 Comparisons of Output Performances. The compari-
sons of the proposed TSCFM with different designs in Refs. [20–
33] are conducted as shown in Table 6. These designs have the fol-
lowing application limitations in the microassembly of multiple
parts:

– The constant force of single-stage ones in Refs. [20–26] cannot
be adjusted, resulting in the inadaptability to micro assembly
with multiple parts and low efficiency.

– Most of the multi-stage constant force mechanisms in Refs.
[27–31] are realized by changing preloading displacement or
assembly and disassembly of the constant force module. The

switching from one constant force to another cannot be
carried out continuously in the gripping process. The low oper-
ating efficiency, large entire dimension, and poor structural
flexibility make it difficult to apply to micro operations.

– A few multi-stage constant force mechanisms in Refs. [32,33]
achieve continuous switching by the integrated mechanism
design. However, their complex structures increase the
overall size and can be hardly applied to microgrippers.

Compared with the above, the proposed TSCFM has the advan-
tages of switching continuity, structural flexibility and integrability,
and small entire dimension, which makes it more suitable for effi-
cient microassembly.

6 Conclusions
A novel two-stage constant force microgripper (TSCFM) has

been proposed in this paper. First, the parallel connection
between multi-stage negative and positive stiffness modules was
utilized to mechanism design of TSCFM with the continuous
switching of the stages in Fig. 4 for overloading protection of multi-
size objects. Second, a hybrid method of EIM and PRBM was
applied in modeling and analyzing of TSCFM, which took bistabil-
ity and nonlinearity of fixed-guided beams as well as linear charac-
ter and apparent complicacy of flexure hinges into account.
Additionally, the parallelogram mechanism played an important
role in terms of the amplifying effect of levarages and the stiffness
performance of flexure hinges, which not only enabled the initial
and final buckling positions of the bistable beams to be arranged
at certain spots, but also served as the positive stiffness module to
compose the two-stage constant force mechanism.

Table 3 Comparisons of the analytical and the FEA results

Performance Analytical FEA Deviation

α 1.57 1.40 12.14%
△d1 (μm) 353.2 305.6 15.58%
F1 (N) 1.24 1.33 6.77%
△d2 (μm) 392.4 330.8 18.62%
F2 (N) 1.04 1.11 6.31%
f1 (Hz) 356.21 277.84 28.2%

Fig. 14 The simulation comparison with and without parasitic motion: (a) total deformation nephogram
of TSCFM without parasitic motion and (b) the comparison of the equivalent stresses of the guided end

Fig. 15 Total deformation nephogram of the first mode of vibra-
tion in modal analysis
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This paper provides a novel type of approach to the parallel con-
nection of negative and positive stiffness modules for multi-stage
constant force performance, as well as better consistency of the
switching of stages during the gripping process. The proposed
hybrid method can be used to not only parameter study of synthesis
problem of constant force mechanism and general flexure hinges
but also the analyses of all compliant mechanisms with both fea-
tures of distributed and lumped compliance. In the future, the mod-
eling method will be optimized to predict more precisely and
topological optimization will be conducted for better static and
dynamic performances.
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