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ABSTRACT The vast majority of modern consumer cameras employ a rolling shutter (RS) mechanism
which has a price and electronic advantage to global shutter (GS). However, in geometric computer vision
applications such as visual simultaneous localization and mapping (VSLAM), performances of accuracy
and robustness are usually deteriorated due to the rolling shutter effect when using the RS cameras. This
paper introduced the Wuhan University Rolling Shutter Visual-Inertial (WHU-RSVI) synthetic dataset for
evaluating VSLAM and VI-SLAM (visual-inertial SLAM) methods in which RS cameras or IMU data are
typically used. The proposed synthetic dataset contains RS images, time-synchronized GS images, inertial
measurement unit (IMU)measurements, and accurate ground truth. It provides camera imageswith 640×480
resolution at 30 Hz and IMU measurements from 90 Hz to 14400 Hz. The cubic B-spline curves are used to
model the motion of trajectories. Based on the known trajectories, an image of each pose can be rendered,
and the corresponding IMU measurement model is then established. The dataset provides realistic images
and IMU measurements by modeling the sensor noise in RGB and IMU data. Two trajectories with three
sequences of different motion speeds (i. e., slow, medium and fast corresponding to different rolling shutter
effects) are contained in the proposed dataset. Herein, the proposed dataset can be applied to compare the
impact of different rolling shutter effects on a specific method.

INDEX TERMS Dataset, IMU, rolling shutter camera, SLAM, visual-inertial.

I. INTRODUCTION
Simultaneous Localization and Mapping (SLAM) has been a
hot research area for computer vision, robotics, and remote
sensing. It is the basic module for many real-time location
applications, such as mobile robots, autonomous driving,
Virtual Reality (VR), Augmented Reality (AR) and Micro
Aerial Vehicle (MAV). SLAM methods can be implemented
with a variety of sensors, such as GPS or LiDAR, but cameras
and IMUs have been widely studied and applied in recent
years for their low cost. There are two types of cameras: RS
camera and GS camera. RS cameras are more widely used
consumer cameras and have a price and electronic advan-
tage to GS cameras. However, its line-by-line or column-by-
column scanning characteristic cause image distortion during
it is moving, which is called the rolling shutter effect as
in Figure 1.

There are various datasets for evaluating VSLAM related
methods such as visual odometry, struct from motion, 3D
reconstruction, etc. There are some commonly used datasets
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FIGURE 1. Rolling shutter camera with different motion modes.
(a) Camera without any motion. (b) Camera with translation. (c) Camera
with rotation. (d) Camera with translation and rotation.

in VSLAM related field in the literature. The TUM dataset
is used for evaluating the monocular [1], RGB-D [2],
and visual-inertial [3] situations respectively. The EuRoC
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datasets [4] present a visual-inertial dataset that contains syn-
chronized stereo images and IMUmeasurements. The KITTI
datasets [5], [6] are usually used for autonomous driving. The
ICL-NUIM RGB-D dataset [7] for the Evaluation of RGB-D
SLAM Systems. Besides, the Oxford RobotCar Dataset [8]
is used for different environments and times. Other datasets
include the University of Michigan North Campus long-term
vision and lidar dataset [9], the Canadian planetary emulation
terrain 3Dmapping dataset [10] and the Chilean underground
mine dataset [11].

All of the above datasets are based on GS images. In
the RS situations, the Zurich Urban Micro Aerial Vehicle
Dataset [12] uses an RS camera to evaluate appearance-
based SLAM and online 3D reconstruction algorithms for
MAVs, but it is not specifically for evaluating the RS
situations. Kerl et al. [13] provide four synthetic RGB-D
sequences and four real RGB-D sequences with GS camera
models and RS camera models. The synthetic sequences
are extended from the ICL-NUIM dataset, the real data
sequences are recorded along with the ground truth tra-
jectory from a motion capture system. Schubert et al. [14]
provide a real dataset that contains GS and RS images,
IMU data and ground truth pose for ten different
sequences.

The rolling shutter effect is still a big challenge to VSLAM
related methods [15]. For a mobile robot using RS cameras,
it will seriously reduce its location accuracy and robust-
ness when ignoring the rolling shutter effect. Our synthetic
framework is inspired by Handa et al. [7] who used a Ray
tracing software and synthetic trajectories to obtain ground
truth depth maps and color images. To obtain the motion
trajectory in real space, wemodeled the motion curve through
B-Splines. After obtaining the poses at a different position on
the trajectories, all images from GS cameras can be rendered
by POV-Ray. Each row of an RS image can be obtained by
rendering it line-by-line. A complete RS image is obtained
by joining every row of an RS image. Through the actual
camera noise model, simulated image noise is added to each
image to make it more similar to realistic images. By mod-
eling the motion curves and the IMU coordinates system,
measurements of IMU is obtained. The simulated IMU noise
is also added according to the noise model of realistic IMU.
This dataset provides two trajectories, each of which provides
three speeds of motion: slow, medium and fast. Each frame
of an RS image has a corresponding GS image with the same
starting time. Hence, this dataset can also be used to evaluate
the differences between GS sequences and RS sequences. All
sequences provide accurate ground truth, thus researchers can
accurately know the error of a specificmethod. Different from
Kerl et al. [13] the dataset of this paper contains IMU data,
different from Schubert et al. [14], the dataset in this paper
is synthetic and each trajectory contains three sequences of
different motion speeds (i. e., slow, medium and fast corre-
sponding to different rolling shutter effects), and the IMU
data in this dataset are recorded at various rates from 90Hz
to 14400 Hz.

This paper generates a dataset for evaluating VSLAM or
VI-SLAM methods when researchers use RS cameras. All
data, documents, programs, scripts are available online under
the Creative Commons Attribution-ShareAlike 3.0 Unported
License at http://aric.whu.edu.cn/rsvi-dataset.html

II. SENSORS
A. CAMERA
Sensors used in our dataset include cameras and IMU. There
are two types of camera used, GS camera and RS camera.

The dataset was generated by POV-Ray (Persistence of
Vision Raytracer),1 an open-source Ray tracing software. The
3D model for the dataset is the ‘‘office’’ model from ignoran-
cia.2 The size of the office model is 800× 500× 250 cm3.

All cameras have a resolution of 640 × 480 and a field
angle of 90 degrees. The POV-Ray’s coordinates are left-
hand, while the right-hand coordinates are often used in the
field of VSLAM, so the left-hand coordinates are converted
to the right-hand coordinates. After conversion, the camera
has an intrinsic matrix shown as

K =

 320.0 0.0 319.5
0.0 320.0 239.5
0.0 0.0 1.0

 . (1)

The ray-tracing is a discrete, digital sampling of the image,
usually one sample per pixel. But such sampling can intro-
duce all sorts of errors. A jagged, stepped appearance may
appear in a sloping or curved line, or it may result in the loss of
details between adjacent pixels. This effect is called aliasing.
techniques used to help eliminate these errors or reduce their
negative impact on the image is called anti-aliasing. Anti-
aliasing is provided in POV-Ray, and all the image in the
dataset is rendered at the Anti-aliasing threshold 0.3.

1) MODEL
The image obtained by CCD image sensor is always GS
image, and a CMOS image sensor can obtain both GS image
and RS image. All pixels are exposed at the same time in
a GS camera. In contrast, the pixels in an RS image are
scanned row-by-row (or column-by-column) so that pixels
in different rows (columns) are not acquired at the same
time. The row-by-row scanned mode is used in this dataset.
Differences between RS camera and GS camera [16] are
shown in Figure 2.

As a result, when the camera or objects are in motion,
the image will be distorted. Distortion of the image is related
to the way of motion, shown in Figure 3.

In a GS camera, a point Pw in world coordinates and its
pixel coordinates Puv satisfy the following projection model:

Puv = K(RPw + t), (2)

where K is the intrinsic matrix, R is the rotation matrix, and
t is the translation vector.

1http://www.povray.org/
2http://www.ignorancia.org/
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FIGURE 2. The scanning principle of GS camera and RS camera. (a) GS camera model. All rows of an image are exposed simultaneously
during a fixed exposure time. (b) Rolling shutter camera model. Each raw of the sensor is sequentially exposed during a fixed exposure
time.

FIGURE 3. Image distortion in different motion modes. v is the direction
of camera motion, and the final image shapes are shown on the right side
of the figure.

In an RS camera, a point Pw in world coordinates and its
pixel coordinates Puv satisfy the following projection model:

Pui = K [δRiR t + δt i]Pw, (3)

where δRi and δt i are the increments of the rotation matrix
and translation vector at the scan of row i relative to the scan
of the first row.

2) NOISE
The function representing the relationship between the
brightness and irradiance of the image pixel value is called
the Camera Response Function (CRF). It is the variety of the
linear and nonlinear relations that the camera receives during
imaging. Grossberg and Nayar [17] analyzed the real CRF in
detail and collected a diverse database of real-world camera
response functions (DoRF).

Images generated by POV-Ray are clean and without any
noise, whereas the real images are noisy. There are various
types of noise in an image, including photon shot noise, dark
current Fixed Pattern Noise, dark current shot noise, offset
Fixed Pattern Noise, source follower noise, sense node reset
noise, and quantization noise [18]. The noise model of CCD
image sensor and the CMOS image sensor is a little different,
such as in the dark current Fixed Pattern Noise [18], [19]. This
dataset only models the most general noise in an image. The
noise model was simplified by Liu et al. [20], and it can be
expressed as

I = f (L + ns + nc)+ nq, (4)

FIGURE 4. Images with different noise levels. (a) Image without any
noise. (b) Image with noise of σs = 0.01 and σc = 0.005. (c) Image with
noise of σs = 0.02 and σc = 0.01. (d) Image with noise of σs = 0.04 and
σc = 0.02. (e)Image with noise of σs = 0.08 and σc = 0.04. (f) Image with
noise of σs = 0.16 and σc = 0.08.

where I is the image brightness, f (·) denotes the CRF. Linear
CRF is a common response model without gamma correc-
tion [21]. Images in this dataset are not gamma-corrected, so a
Linear CRF is also used in our generated images. ns repre-
sents all the noise components that depend on irradiance L,
nc is the independent noise before gamma correction, and nq
is additional quantization and amplification noise. Since most
cameras can achieve very low quantization and amplification
noise, so the nq is ignored in our model. It is assumed that the
mean and variance of noise satisfy the following statistics:
E (ns) = 0, Var (ns) = Lσ 2

s , E (nc) = 0, Var (nc) = σ 2
c .

According to equation (4), realistic noise can be added to
the image. Images can be obtained with different noise levels
by using different values of σs and σc. Images with different
noise levels are shown in Figure 4. In this dataset, σs is set
to 0.04, σc is set to 0.02, where these values are in line with
realistic image noise [20].

B. IMU
1) MODEL
The IMU data is obtained from the trajectories’ pose ground
truth. However, the ground truth pose is represented in the
world coordinates where the acceleration and angular veloc-
ity in IMU measurements are represented in the IMU body
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coordinates. Therefore, pose in the world coordinates must
convert to the IMU measurements in the body coordinates.
In this dataset, the origin of world coordinates coincides with
that of body coordinates. When the position of sensors in
the world coordinates is s = [x, y, z]T , its velocity is v =
[ẋ, ẏ, ż]T and its acceleration are aw = [ẍ, ÿ, z̈]T .
The special orthogonal group, quaternions, rotation vec-

tor and Euler Angles can all representing the attitude [22].
In general, using Euler angles is a bad practice because of the
singularities. For instance, in a z − y − x rotation sequence,
the gimbal lock occurs when the rotation around the Y-axis
is equal to 90 degrees. However, the Euler angles are used to
represent rotations in this paper for the reason that compared
with other representations, Euler Angles are more simple
and intuitive, which makes them well to analyze and control.
Since the trajectories in the dataset are artificially designed,
so the Euler angles that can be visually interactive are chosen
in this paper, and the trajectories in this dataset are designed
carefully that avoided the singularities.

The rotations of Euler angles can be extrinsic or intrinsic.
The extrinsic means rotation around the axis of the world
coordinates, while intrinsic means rotation around the axis
of the body coordinates. The results of [ψ, θ, φ]T order of
the extrinsic rotations are the same as [φ, θ, ψ]T order of
the intrinsic rotations. In POV-Ray, a camera’s attitude is
representing by Euler angles of extrinsic rotations, while
in SLAM applications, the intrinsic rotations are generally
used. After conversion, the rotations of Euler angles in this
dataset is the z − y − x order of intrinsic rotations, and
the rotation matrix corresponding to the Euler angles is
expressed as

R = Rz (ψ)Ry (θ)Rx (φ)

=

 cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


×

 1 0 0
0 cosφ − sinφ
0 sinφ cosφ


=

 cosψ cos θ cosψ sin θ sinφ − sinψ cosφ
sinψ cos θ sinψ sin θ sinφ + cosψ cosφ
− sin θ cos θ sinφ

cosψ sin θ cosφ + sinψ sinφ
sinψ sin θ cosφ − cosψ sinφ

cos θ cosφ

 . (5)

Gyroscope measurements are the angular velocity of the
IMU body coordinates. The Euler angles’ derivatives of
time are

[
φ̇, θ̇ , ψ̇

]T . Assume that the IMU body angu-
lar velocity is g =

[
gx , gy, gz

]T . As described in [9],
the first Euler angle ψ undergoes two additional rota-
tions, the second θ undergoes one additional rotation, and
the third φ without any additional rotations, by consider-
ing the inverse relationship where the Euler angle rotation
sequence z − y − x is used to map Euler rates to gyroscope

measurements as gxgy
gz

 =
 φ̇0
0

+ RT
x (φ)

 0
θ̇

0

+ RT
x (φ)R

T
y (θ )

 0
0
ψ̇


=

 1 0 − sin θ
0 cosφ sinφ cos θ
0 − sinφ cosφ cos θ

 φ̇θ̇
ψ̇

 . (6)

The acceleration measured by IMU a =
[
ax , ay, az

]T
is also the acceleration in the body coordinates. Besides,
the acceleration of gravity is considered to be constant as
agw. Therefore the acceleration between body coordinates
and world coordinates can be expressed as

a = RT (aw + agw). (7)

According to equation (6, 7), IMU measurements can be
obtained without any noise.

2) NOISE
Based on the IMU ground truth, the simulated realistic noise
can be added to the clean IMU data. Assume that the addi-
tional noise of both accelerometer and gyroscope is Gaussian
white noise. In addition to the Gaussian white noise, IMU
measurements also affected by the accelerometer bias ba
and the gyroscope bias bw. The IMU measurement model is
shown as

â(t) = a(t)+ na(t)

ĝ(t) = g(t)+ ng(t), (8)

where â(t) denotes the accelerometer raw data, and ĝ(t)
denotes the gyroscope raw data. a(t) is the ground truth of
accelerometer. na(t) denotes the noise of the accelerometer.
g(t) is the ground truth of gyroscope and ng(t) denotes the
noise of gyroscope. The noise process of accelerometer and
gyroscope can be written as [4]

na(t) = ba(t)+ wa(t)

ng(t) = bg(t)+ wg(t), (9)

where wa and wg are continuous Gaussian white noise pro-
cess with a strength of σa and σg. The larger σa and σg
indicate that IMU measurements have more noise. It satisfies
the following conditions:

E [wa (t1)wa (t2)] = σ 2
a Iδ (t1 − t2)

E
[
wg (t1)wg (t2)

]
= σ 2

g Iδ (t1 − t2) , (10)

where δ(·) is the Dirac delta function. It can be seen that the
Gaussian white noise at different times is independent of each
other.

The discrete-timemodel of Gaussian white noise is defined
as

nd [k] = σ ndw[k], (11)

where w[k] ∼ N (0, 1),σ nd = σ n 1
√
1t

.
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The accelerometer bias and the gyroscope bias are mod-
eled as a random walk. The random walk is a discrete
model while the corresponding continuous model is called
the Wiener Process or Brownian motion. Formally, this
process is generated by integrating ‘‘white noise’’ of strength
σba(accel) or σbg(gyro):

ḃa = wba

ḃg = wbg, (12)

where wba ∼ N
(
0, σ 2

ba

)
,wbg ∼ N

(
0, σ 2

bg

)
. The discrete-

time model of the random walk process is as follows:

bd [k] = bd [k − 1]+ σ bdw[k], (13)

where w[k] ∼ N (0, 1),σ db = σ b
√
1t .

Combine the IMU ground truth and its noise model,
the realistic noise of the IMU is simulated. Discrete-time
random walk noise of the accelerometer and gyroscope at
each step is as follows:

bdbg[k] = bdbg[k − 1]+ σ dbg
√
1tw[k]

bdba[k] = bdba[k − 1]+ σ dba
√
1tw[k]. (14)

Therefore, The discrete-time model of IMU can be
obtained at time k , and the realistic noise can be simulated
step by step according to

â[k] = a[k]+ σ a
1
√
1t

w[k]+ bdba[k − 1]+ σ ba
√
1tw[k]

ĝ[k] = g[k]+ σ g
1
√
1t

w[k]+ bdbg[k − 1]+ σ bg
√
1tw[k].

(15)

III. DATASET
A. TRAJECTORIES
The movement of mobile robots is usually continuous and
smooth. To get a trajectory closer to the real trajectory in
simulation, an appropriate trajectory generation method is
needed. B-splines are a widely used tool in the configuration
of curves and it is proposed by [23]. In this dataset, the cubic
B-Spline is used to construct the trajectories curves.

The B-spline curve of n orders is defined as

Pk,n(t) =
n∑
i=0

Pi+kBi,n(t), t ∈ [0, 1], (16)

where Pi+k are control points at time ti, i ∈ [0, . . . , n],
and Bi,n(t) denote the basis functions [24], where Bi,n(t) are
defined as follows:

Bi,n(t) =
1
n!

∑n−i

j=0
(−1)jC j

n+1(t + n− i− j)
n

t ∈ [0, 1], i = 0, 1, . . . , n. (17)

The curve is called the cubic B-spline when n = 3, and its
basis functions are derived as

Bi,3(t) =
1
6

(
−t3 + 3t2 − 3t + 1

)
Bi+1,3(t) =

1
6

(
3t3 − 6t2 + 4

)
Bi+2,3(t) =

1
6

(
−3t3 + 3t2 + 3t + 1

)
Bi+3,3(t) =

1
6
t3

t ∈ [0, 1].

(18)

A segment of the B-spline is controlled by 4 points:
Pi, Pi+1, Pi+2, Pi+3. According to equation (16, 18),
the cubic B-spline is expressed in the form of the matrix can
be deduced as

Pi,3(t) =
1
6

[
1 t t2 t3

]
1 4 1 0
−3 0 3 0
3 −6 3 0
−1 3 −3 1




Pi
Pi+1
Pi+2
Pi+3

 ,
t ∈ [0, 1]. (19)

The locality of cubic B-Spline is mostly considered among
its many properties. The locality of B-splines means that
every point on the curve is only related to its corresponding
control points but nothing to do with others. When the curve
needs to be modified, only the local control points need to be
modified, andmodifications do not affect the rest of the curve.
The trajectories will inevitably encounter extreme situations
during the generation process. For example, the camera may
interfere with the object, which will cause the image to be
completely blocked. At this time, it is necessary to modify
the local trajectory and re-render the image related to the local
trajectory.

The trajectories in this dataset have six variables, namely
the translation along the axes of x, y, z, and the rotation
around the axes of x, y, z. Since each variable is indepen-
dent of others, the cubic B-spline interpolation is carried out
for each variable respectively. By taking the first-order and
second-order derivatives of the curve in time, the velocity and
acceleration can be obtained

The trajectory generation steps of this dataset in this paper
are as follows:

(1) Set the basic control points manually to get the general
outline of the curve.

(2) Perform cubic B-spline interpolation on each control
point to get the frame control points for each frame of data.

(3) Perform cubic B-spline interpolation on the frame con-
trol points to obtain the pose of each scan line in an image.

Frame control point always covers an average of 1 frame
while a basic control point covers multiple frames. In the
slow trajectories, a basic control point covers an average
of 20 frames, and in the case of medium and fast, it is 10 and
5 frames, respectively.

The reason to perform cubic B-spline interpolation on each
basic control point to get the frame control points first is
to control the curve more precisely and reduce re-rendering
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FIGURE 5. Images of the office room scene taken at different camera pose. Images in the first row are clean and taken by a GS camera, images in
the second row are clean and taken by an RS camera, and the images with simulated noise are displayed in the third row.

calculations. For a cubic B-spline curve, when a control point
is modified, the adjacent 4 curve segments will change, i.e., if
a frame control point is modified, there will be 4 frames that
need to be re-rendered. When only basic control points are
used, taking the slow trajectories as the example, modifica-
tion of a basic control point will cause 80 frames to be re-
rendered (the number of interpolations needs to be increased
by 20 times to get the same number of frames), which greatly
increases the calculations. Therefore, in this paper, frame
control points are obtained first, and then the pose of each
scan line in an image is obtained.

This method allows for a flexible trajectory in three-
dimensional space with only a few control points. Then the
IMU ground truth can be obtained by equation (6, 7).

In the same trajectory, if the camera or object moves
at different speeds, the image will be obtained at different
rolling shutter effects. The faster the camera or object moves,
the more obvious the rolling shutter effect is. Conversely,
an RS camera is identical to a GS camera when everything
is static.

The dataset is obtained in an office room scene. The model
of the scene is modified to meet the requirements of the
dataset. The overview of the dataset is shown in Figure 5.

Each trajectory contains three sequences of different
motion speeds (fast, medium and slow). Although the shapes
of three speeds are slightly different at the micro-level, they
look very similar overall. The detail information of the trajec-
tory is shown in Table 1.

The trajectories estimation overview is shown in Figure 6
and the absolute trajectory error (ATE) results are shown
in Table 2. The evo tools [25] are used to plot the trajec-
tories estimation figures and the VINS-Mono [26] is used
to estimate the detailed results. The bold numbers represent

TABLE 1. Trajectories characteristics.

the best estimation of each trajectory, while the red numbers
represent the worst. Results generally show that the faster a
camera moves, the better the estimation is when using a GS
camera. On the contrary, the faster a camera moves, the worse
the estimation is when using an RS camera.

B. COORDINATE FRAME CONVENTIONS
In this section, we describe the coordinates frame conventions
used in the WHU-RSVI dataset.

The rotation around the fixed coordinates axis used in the
POV-Ray when an image is rendering. The POV-Ray uses a
left-hand coordinates system where in the area of VSLAM,
the right-hand coordinates are usedmostly. In this case, all the
coordinates used are right-hand coordinates after the images
are rendered. When the coordinates are converted, the X-axis
remains unchanged in the new coordinates system, while the
Y-axis direction in the new coordinates is consistent with
the Z-axis direction of the previous coordinates, and the
Z-axis direction in the new coordinates is consistent with the
Y-axis direction of the previous coordinates system. More-
over, the rotation around the left-hand coordinates becomes
a rotation of the right-hand coordinates of equal magnitude
and opposite directions. The origin of the IMU coordinates
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TABLE 2. Trajectories estimation.

FIGURE 6. Trajectories of different speeds and camera modes estimated by VINS-Mono. (a) trajectory-1 with fast motion.
(b) trajectory-2 with fast motion. (c) trajectory-1 with medium motion. (d) trajectory-2 with medium motion. (e) trajectory-2 with slow
motion. (f) trajectory-1 with slow motion.

is coincident with the origin of the camera coordinates sys-
tem. This is different from the general situation, in practice,
the camera’s coordinates origin and the IMU’s coordinates
origin have a translation in addition to the rotation.

The Local east, north, up (ENU) coordinates are used
in the IMU coordinates. It is far more intuitive and

practical than Earth-Centered, Earth-Fixed coordinates.
In the local ENU coordinates, the east axis is labeled x,
the north axis is labeled y, and the up axis is labeled
z. The camera coordinates have a rotation of 90 degrees
around the X-axis relative to the IMU coordinates in this
dataset.
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TABLE 3. Dataset description.

C. DATA FORMAT
The dataset contains time-synchronized RS images and GS
images at full resolution (640 × 480), and full frame rate
(30 Hz). In an RS image, the time between two consecutive
rows is 69.44 microseconds. The IMU data are recorded at
various rates from 90Hz to 14400 Hz. The structure of the
dataset is shown in Table 3.

1) IMAGES
All camera images are 8-bit RGB format. From a noise point
of view, images include clean images and images with realis-
tic noise. From the perspective of the sensors, images include
RS images and the GS images. For each image sequence,
a TUM compatible file times.txt and a EuRoC compatible file
data.csv are created. The camera parameters are described
in the sensor .yaml under the /img folder which includes its
extrinsic matrix, frame rate, resolution, and camera model.

2) IMUs
The /imu folder includes two EuRoC compatible files,
the data.csv, and the sensor .yaml. The data.csv records
timestamps in nanoseconds. The units of the accelerome-
ter and gyroscope are rad/s and m/s2 respectively. Both
accelerometer and gyroscope data have an 18-bit accuracy.
The sensor .yaml in the /imu folder records the extrinsic
matrix to the body frame coordinates, the rate of data,
the accelerometer noise density, the gyroscope noise density,
the accelerometer random walk density, and the gyroscope
random walk density.

3) GROUND TRUTH
The dataset provides ground truth with different frame rates
from 90Hz to 14,400Hz. The groundtruth folder includes
three types of files: sensor − camera.yaml, sensor .yaml,
and different groundtruth − nHz.csv. The sensor .yaml
records the extrinsic matrix of IMU. The groundtruth.txt
is TUM compatible file that records the translation and
quaternion in the world coordinates with timestamps.

The groundtruth − nHz.csv is EuRoc compatible file that
records the translation, quaternion, and velocity in the world
coordinates, and gyroscope measurements, accelerometer
measurements in the body-frame coordinates.

IV. CONCLUSION
This paper presents a new synthetic dataset mainly aiming at
VSLAMorVI-SLAM relatedmethods where the RS cameras
and IMU sensors are widely used. For the same trajectory,
sequences of three different motion speeds can be used to
evaluate the influence of different levels of rolling shutter
effect. The time-synchronized global shutter sequences can
be used to compare with the RS sequences when they are
used on a specificmethod. The sequences are estimated by the
VI-SLAM framework VINS-Mono, and the results generally
show that the faster an RS camera moves, the smaller the
absolute trajectory error of a sequence.

Comparedwith other datasets obtained by amotion capture
system, the ground truth of a trajectory is calculated without
sampling error. Also, it has a variety of IMU rates, which
is not available in other works. Finally, our dataset provides
the same scenario, but different motion speeds. These char-
acteristics make the researchers a better understanding of the
VI-SLAM related methods.

This dataset can be extended into the other areas of com-
puter vision and robotics. In the future, we will seek to
expand the dataset with more sequences with motion blur
and various image noise. The IMU is often used with the
magnetometer, hence, adding the magnetometer data into the
dataset is another research aspect.
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