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Many human manipulation skills are force relevant, such as opening a bottle cap and assembling furniture. However, it is still a
difficult task to endow a robot with these skills, which largely is due to the complexity of the representation and planning of these
skills. This paper presents a learning-based approach of transferring force-relevant skills from human demonstration to a robot.
First, the force-relevant skill is encapsulated as a statistical model where the key parameters are learned from the demonstrated
data (motion, force). Second, based on the learned skill model, a task planner is devised which specifies the motion and/or the
force profile for a given manipulation task. Finally, the learned skill model is further integrated with an adaptive controller that
offers task-consistent force adaptation during online executions. The effectiveness of the proposed approach is validated with two
experiments, i.e., an object polishing task and a peg-in-hole assembly.

1. Introduction

Manipulation skill is one of the most important capabilities
that a robot is expected to have. During the past decades, a
large number of studies have been done on robot manipula-
tion in free space in terms of planning and control. However,
in many scenarios, a robot is required to physically interact
with humans or its environment, such as the human-robot
cooperation in household or in the industrial setting like
polishing, deburring, assembly, etc. Apparently, the informa-
tion about the interacting force between the robot and its
environment is of great importance in these tasks. Therefore,
in order to successfully accomplish these manipulation tasks
for robots, it is necessary to endow them with force-relevant
skills.

To this end, during the past decades, various control
algorithms have been proposed and ported to different robot
platforms to accomplish a large variety of interaction tasks
[1].These algorithms can be roughly divided into two groups,
named passive interaction control and active interaction con-
trol. The first group uses the mechanical design to empower
robots with passive compliance that can roughly accommo-
date some force-motion relation during interaction.Themost

notable example is the remote center of compliant (RCC)
device used in industrial assembly [2], especially for the
peg-in-hole case. The RCC adapts its motion passively to
the unexpected forces during insertion process. In general,
these compliant mechanisms are specifically designed for
some interaction tasks and they can only provide a limited
range of compliance. The other group encompasses active
force control approaches that modulate the interacting force
explicitly according to some task status variables. Typical
exemplar algorithms include hybrid force/position control
[3] and the well-known impedance control [4]. The active
force control approach offersmore flexibility to accommodate
the interaction between the robots and the environment. The
flexibility is usually achieved by an explicit specification of the
motion and the force profile for the given interaction task.

In order to ensure the stability of the force controller,
a typical active force control approach requires an accurate
dynamic model of the contact interactions [1], which is not a
trivial task, especially when the environment to be interacted
with is unknown or varying over time. In these cases, a
small uncertainty in position may lead to an extremely large
reaction force that could be unfavorable for the robots and
the environment. To solve this problem, usually a careful
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2 Complexity

parameter tuning is demanded for interaction tasks such
as polishing and assembly. Besides the controller itself, the
specification for the trajectory and force profile can greatly
influence the performance of the interaction task. However,
this planning process could be considerably time-consuming
for the non-robotics-experts to apply a robot manipulator to
a new interaction task. Moreover, the profile of the trajectory
and the force during execution may need to adapt to the task
requirements or to the variations in the environments. Hence,
sensory feedback such as force information should be taken
into account to monitor the status of the task completion and
to adapt the trajectory accordingly.

Recently, learning-based approaches have been exten-
sively applied for manipulation tasks, mainly including rein-
forcement learning [5–7] and Learning from Demonstration
(LfD), or called imitation learning [8–10]. LfD can benefit
from human guided demonstrations or simulations, which
in general requires less training data and thus less time to
train and deploy. This merit is practically important to teach
a new manipulation skill to a robot, especially in industrial
settings where deployment is usually time-limited.Therefore,
we restrict the rest of this review to LfD for manipulation
tasks only.

Depending on the tasks at hand, many researchers have
used LfD for position-based manipulation tasks. In these
tasks, the skills to be learned are usually encoded in the
trajectory level in terms of position and velocity profile
[11–13]. More recently, for interaction tasks, the profile of
stiffness and impedance has been taken into account for
skill learning to encapsulate the relation between forces and
positions [14–18]. For example, in [19], EMG signal of a
human arm was introduced to encode position and stiffness
features. However, these works only implicitly capture the
force characteristics with respect to the positions, which
means that the precise value of the applied force is not so
critical.

In this work, we mainly focus on force-relevant skills
where the force profiles should be encoded explicitly [20].
However, it is not trivial to explicitly demonstrate and encode
the applied force skills for a given task. The interaction
force information is hard to be measured directly. More-
over, the correlation between the interaction force and the
motion is also task-dependent and difficult to specify. Lin
et al. presented a motion and force learning framework for
grasping tasks [21]. The motion and force were modeled
using temporal information with Gaussian Mixture Model
(GMM) based machine learning approaches. Kormushev
et al. adopted kinesthetic teaching and haptic input for
demonstration of two manipulation tasks, namely, an ironing
task and a door-opening task [22]. Timewas considered as an
additional input variable in these papers, which may lead to
large time discrepancies to handle. In [23], a Hidden Markov
Model (HMM) was adopted to encode force-based manip-
ulation skill for a ball-in-box task. A haptic device was also
exploited for teleoperation and for improving the teacher’s
demonstrations. As formore dexterous tasks, such as opening
a bottle cap or inserting a bulb into the socket where multiple
fingers (or manipulators) were involved, the learned skill was
usually demonstrated and learned in the object-level. In [14],
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Figure 1: Framework of learning force-relevant skills.Withmultiple
human demonstrations, a probabilistic task representation model is
learned, from which a trajectory and force profile for the task are
derived.

the force applied on the object was measured with a high
resolution tactile sensor. A data glove mounted with tactile
sensing was used for direct demonstration in [24]. Based on
the similarity of varying demonstrations, the learned force-
based skills were modularized and can be further combined
formore complicated tasks. For other finemanipulation tasks
such as assembly and surface-surface alignment, kinesthetic
teaching with manual corrections was used to capture the
important spatial relationships [25] or to encode the force-
velocity correlations [26]. In these researches, the relationship
and distributions of position and force were used to guide the
design of the task planner but not to adjust parameters of the
force controller.

In this paper, we present a learning approach from
demonstration framework for force-relevant skills as shown
in Figure 1. Inspired by kinesthetic teaching approaches as
in [27, 28], we propose a demonstration method to allow
the demonstrators to teach interaction tasks in a natural
way. The demonstrated motion and force information are
recorded simultaneously and encoded as a joint probability
distribution without using temporal input. A task planner
and an adaptive control policy are derived from this joint
model to enable online task executions. Our work differs
from these works in the sense that the learned model is used
not only for fast planner generation but also for designing
adaptive force control policy and the learned model. The
main contributions of this paper are twofold: (1) A systematic
framework is proposed in Figure 2 to learn the force-relevant
skill as a statistical model, which essentially encapsulates the
correlation between the interaction force and the motion; (2)
based on the learned skill model, a task planner is devised
to specify the desired motion and/or the force profile for a
given manipulation task, and an adaptive force controller is
designed for online executions.

This paper is organized as follows: in Section 1, the
background and some related works regarding learning-
based approaches for interactionmanipulation tasks are sum-
marized. In Section 2, the representation of the interaction
manipulation tasks is formulated. In Section 3, methods for
learning of force-relevant skills from human demonstration
are presented. Experimental results on polishing and assem-
bly tasks are demonstrated and discussed in Section 4, along
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Figure 3: Typical examples of force-relevant skills, including pol-
ishing, assembly, and grasping.

with discussion about limitations. Finally, conclusions and
future work are presented in Section 5.

2. Representation of Force-Relevant Skills

In this section, we will first introduce the representation of
force-relevant skills, followed by several typical examples.

2.1. Force-Relevant Skill Representation. Contact interaction
tasks of a robot manipulator require compliant behavior,
including interaction force and end-effector position adjust-
ment, which can be described as follows:

Ω : {𝑋, 𝑋̇,𝐹, 𝑘} (1)

where Ω is a specific task. 𝑋 and 𝑋̇ are the desired position
and velocity in task space. 𝐹 is interaction force/torque
(wrench) vector. 𝑘means the task constraint.

Skill acquisition is to find the internal correlation of these
parameters. Skill of task Ω can be represented as

Φ (𝑋, 𝑋̇,𝐹, 𝑘) = 0 (2)

Parameters and their internal correlation can be learned by
learning algorithms presented in Section 3.

2.2. Typical Examples. Typical examples of force-relevant
skills in robot manipulation include polishing, grinding,
grasping and assembling in Figure 3. In these application
scenarios, interaction force determines the quality of task
execution.

Although most grinding and polishing and operations
are done manually or automated by robots in pure motion
control with high accuracy and speed, force control is still
necessary to obtain higher machining quality [20].

Grinding and polishing tasks have same characteristics.
They require a robotmanipulator equipped with amachining
head as an end-effector to move along position trajectories
attached to the workpiece, while contact forces are exerted on
the normal direction. In this case, hybrid force/position con-
trol is often adopted to control contact force and movement
trajectory on orthogonal subspaces. The task constraint 𝑘 is
to keep the position of polishing point along the tangential
direction of the surface and limit the contact force within
a proper range. Contact force is one of the most important
technological parameters for the machining quality, such as
dimensional tolerance, tolerance of form and position and
surface roughness. This kind of skills could be represented as
a mapping function 𝑓() : {𝑋, 𝑋̇} 𝑘󳨀→ 𝐹. For a certain position
𝑋and velocity 𝑋̇, contact force𝐹 is calculated as a conditional
distribution. When there is a new polishing path by human
kinesthetic teaching or human input, the force and velocity
profiles are generated. However, precise force control is not
necessary. It is enough to control the contact force within a
proper range for the requirements of these tasks.

As for grasping and assembling tasks, force/torque data
imply information interaction state. Human can complete
these tasks only by haptic feedback without visual feedback.
The position, orientation, and velocity of the task end-
effector are corrected by force/torque feedback. In peg-in-
hole assembly, the constraint 𝑘 is to restrain the xy-axis force
and torque to zero and xy-axis linear velocity and angular
velocity to zero. Therefore, skills are adjustment strategies
as a mapping function 𝑔() : 𝐹 𝑘󳨀→ {𝑋, 𝑋̇}. A controller is
designed by adjusting position 𝑋 and velocity 𝑋̇ based on
current interaction force/toque under constraint condition 𝑘,
and tasks could be carried out.

3. Learning of Force-Relevant Skills

3.1. Human Demonstration. In LfD, choosing an appropriate
technique to perform human demonstration and record data
is vitally important. Methods can be classified into two
categories: manipulating robots via kinesthetic teaching and
executing the task directly by a demonstrator, as shown in
Figure 4.

Kinesthetic teaching is the major technique for directly
transferring human experience to robot. It allows a human to
touch and handle the robot’s body with hands. The method
of hands on tools is achieved by using sensed force data to
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Figure 4: Different demonstrationmethods. Left: kinesthetic teach-
ing with human hands on tools or robot arms, including teleopera-
tion with a remote control device. Right: human direct teachingwith
recorded sensor data.

guide the robot. The method of hands on arms is based on
torque-controlled backdrivable joints. So manipulation tasks
can be accomplished under experienced human guidance.
The trajectory of end-effector movement and contact force
are recorded simultaneously by the robot’s encoders and F/T
sensor. Another common way is by teleoperation. A remote
control device, such as a joystick or data glove, is handled
as a master to control the robot by motion mapping. So
interaction force is unknown for human hands. It is often
used as kinematic demonstration for trajectory record in LfD.

The other approach for human demonstration is to
perform tasks directlywith humanhands, rather than guiding
the robot [26]. A force/torque sensor and 3D vision trackers
are equipped on the end-effector to record the interaction
force and hands’ movement respectively. This is the most
direct demonstration approach. Delicate force and position
control strategy can be realized. However, the recorded data
must be transferred to robots. Many differences between
demonstrators and robots lead to correspondence issues for
direct mapping [29], which are still challenging tasks for
effective transfers. Another disadvantage of this technique is
that expensive sensors for 3D vision position tracking and
force/torque measurement are required.

For specific manipulation tasks, we may adopt different
demonstration methods for better data recording.

3.2. Skill Learning. With a set of demonstrations under
human guidance, machine learning is adopted in terms of
encoding and reproduction of a skill. In this subsection,
GMM is used to encode demonstration data as a probabilistic
model.Then, Gaussian Mixture Regression (GMR) is used to
predict the desired skills [30].

Considering a framework of skill representation in (1), we
define a dataset 𝜉 = [𝐹𝑇,𝑋𝑇]𝑇 or 𝜉 = [𝑋𝑇,𝐹𝑇]𝑇 (determined
by different skills), where 𝐹 ∈ R𝐷𝐹×𝑁 and 𝑋 ∈ R𝐷𝑋×𝑁 are
the interaction force and trajectory, respectively. The dataset
is encoded with GMM, a mixture of Gaussian distributions
in 𝐾 components. The probability of a datapoint 𝜉0 ∈ R𝐷 in
dataset 𝜉 = [𝜉𝑖, 𝜉𝑜] under the GMM is

𝑝 (𝜉0) = 𝐾∑
𝑘=1

𝜋𝑘N (𝜉0;𝜇𝑘,Σ𝑘)

= 𝐾∑
𝑘=1

𝜋𝑘 1
√(2𝜋)𝐷 󵄨󵄨󵄨󵄨Σ𝑘󵄨󵄨󵄨󵄨

𝑒−(1/2)(𝜉0−𝜇𝑘)𝑇Σ−1𝑘 (𝜉0−𝜇𝑘))
(3)

where 𝜋𝑘 ∈ [0, 1] are prior probabilities; Σ𝐾𝑘=1𝜋𝑘 = 1, 𝜇𝑘 ∈
R𝐷, Σ𝑘 ∈ R𝐷𝑖×𝐷𝑜 represent means and covariance matrices
of the Gaussian in the GMM. Then we define the means and
covariance matrices of input and output components as

𝜇𝑘 = [𝜇𝑖𝑘
𝜇𝑜𝑘

] ,

Σ𝑘 = [Σ𝑖𝑘 Σ𝑖𝑜𝑘
Σ𝑜𝑖𝑘 Σ

𝑜
𝑘

]
(4)

For a given input variable 𝜉𝑖, the conditional probability
distribution of the output 𝜉𝑜 can be written:

𝑝 (𝜉𝑜 | 𝜉𝑖) = 𝐾∑
𝑘=1

𝑝 (𝑘 | 𝜉𝑖)N (𝜉̂𝑘, Σ̂𝑘) (5a)

where

𝜉̂𝑘 = 𝜇𝑜𝑘 + Σ𝑜𝑖𝑘 (Σ𝑖𝑘)−1 (𝜉𝑖 − 𝜇𝑖𝑘) (5b)

Σ̂𝑘 = Σ𝑜𝑘 − Σ𝑜𝑖𝑘 (Σ𝑖𝑘)−1 Σ𝑖𝑜𝑘 (5c)

The weighting function 𝑝(𝑘 | 𝜉𝑖) represents the probability
that 𝑘-th Gaussian component is responsible for 𝜉𝑖

𝑝 (𝑘 | 𝜉𝑖) = 𝑝 (𝑘) 𝑝 (𝜉𝑖 | 𝑘)
∑𝐾𝑗=1 𝑝 (𝑗) 𝑝 (𝜉𝑖 | 𝑗)

= 𝜋𝑘N (𝜉𝑖;𝜇𝑖𝑘,Σ𝑖𝑘)
∑𝐾𝑗=1 𝜋𝑗N (𝜉𝑖;𝜇𝑖𝑗,Σ𝑖𝑗)

(6)

GMR is achieved by calculating the conditional expectation
of 𝜉𝑜, given 𝜉𝑖, in (5a):

𝐸 {𝑝 (𝜉𝑜 | 𝜉𝑖)} = 𝐾∑
𝑘=1

𝑝 (𝑘 | 𝜉𝑖) 𝜉̂𝑘 (7)

GMM/GMR is then described by a set of parameters{𝜋𝑘,𝜇𝑘,Σ𝑘}𝐾𝑘=1, which are estimated iteratively by the Expec-
tation Maximization (EM) algorithm. The hyperparameter𝐾, namely, the number of Gaussian components, is selected
using Bayesian Information Criterion (BIC).

3.3. Task Execution

3.3.1. Adaptive Hybrid Force/Position Control. A task planner
is to specify the motion and force profile and plan compliant
motion commands, shown in Figure 2.Themotion and force
profile could be generated by learned skills or given from
human input.

In scenarios of force-relevant tasks, position and force
control is required to accomplish complaint behavior. A
popular approach is to adopt hybrid force/position control
scheme, which separates the task of position and force control
into two orthogonal subspaces. Aiming at position/velocity
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controlled robot manipulators, we establish an adaptive
force/position controller based on planned trajectories and
contact force distribution from the learned model, shown
in Figure 5. The control law 𝑋𝑐 ∈ R6×1 is calculated
combining the desired position 𝑋𝑑 and the adjustment 𝑋𝐹
from force controller. We take an adaptive PI controller as the
force controller. All coordinates are marked in Figure 6(a),
including the robot base link {𝐵}, the force sensor {𝐹}, end-
effector {𝐸}, and the workpiece {𝑊}. The sensory wrench 𝐹𝑓
is in coordinate system {𝐹} and the transformation from {𝐹}
to {𝐸} is represented as a rotation matrix 𝐸𝐹𝑅 ∈ R3×3 and a
translation vector 𝐸𝐹𝑃 ∈ R3. With inertia force ignored, the
contact force 𝐹𝑒 in {𝐸} is calculated as

𝐹𝑒 = 𝐸𝐹𝑇𝐹𝑓 (8a)

with

𝐸
𝐹𝑇 = [ 𝐸𝐹𝑅 03×3
𝑃𝑡
𝐸
𝐹𝑅
𝐸
𝐹𝑅

] (8b)

where 𝐸𝐹𝑇 ∈ R6×6 is the force transformmatrix.𝑃𝑡 is the skew-
symmetric matrix of the vector 𝐸𝐹𝑃.

The whole controlled motion command 𝑋𝑐 is given by

𝑋𝑐 = 𝑋𝑑 +𝑋𝑒 (9a)

𝑋𝑒 = 𝐾𝑓𝑝�𝐹𝑑 + 𝐾𝑓𝑖 ∫�𝐹𝑑𝑑𝑡, 𝐾𝑓𝑝 = 𝐾𝑓0𝑝
𝜎𝐹𝑑

(9b)

�𝐹𝑑 = 𝑆 (𝐹𝑑 − 𝐹𝑒) (9c)

where 𝑋𝑒 ∈ R6×1 is the adjustment to tracking the desired
force 𝐹𝑑 ∈ R6×1. 𝐾𝑓0𝑝 , 𝐾𝑓𝑖 ∈ R6×6 are constant parameters
of the PI controller. 𝜎𝐹𝑑 represents the standard deviation
of the force distribution. 𝑆 is the diagonal selection matrix
under constraint 𝑘. As precise force control is difficult for
force-relevant tasks in complex environment, keeping the
interaction force in a proper range is enough for the task
requirements. We design this adaptive PI control for force
tracking. A smaller value of 𝜎𝐹𝑑 implies more accurate force
is desired. Thus a bigger proportional parameter 𝐾𝑓𝑝 is
calculated as (9b) for rapidly tracking the desired force.

3.3.2. Task Performance Evaluation. Force-relevant skills
have their specific requirements between different tasks. For
machining process, such as polishing and burring, control-
ling contact force in a proper range is required for machining
quality. A natural approach to evaluate tasks is to measure the
machining quality, which is hard to detect and highly relevant
to the demonstrator and processing technology. As precise
force control is not necessary, tracking performance could be
partly evaluated by the proportion of effective time of force in
the proper range.

Considering interaction tasks of more complex manipu-
lation, such as assembly and grasping, we can define perfor-
mance evaluation criteria on account of characteristics of task
executions. Task success rate and completion time are directly
visualized parameters. The norm of contact force/toque and
average of energy consumption refer to inner interaction
quality. Excessive contact force/torque may damage the end-
effector or workpiece. More energy consumption is against
extensive use of automation, which can be calculated as
follows:

𝑊𝑒 = 𝑛∑
𝑖=1

∫𝑇
0
𝑈𝑖𝐼𝑖𝑑𝑡 (10)

where 𝑛 refers to joint numbers, 𝑈𝑖, 𝐼𝑖 for the voltage and
current of 𝑖-th joint and 𝑇 is the task completion time.

4. Experiments

In this section, we set up two kinds of force-relevant tasks, a
surface polishing task and a peg-in-hole assembly, to validate
the proposed framework. The experiments were conducted
with UR robot manipulators and an OptoForce six-axis F/T
sensor. UR robots were controlled and programmed by using
the Robot Operating System (ROS) through the UR driver
[31], with a control rate of 125 Hz.
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4.1. Polishing. We present our experimental results of surface
polishing task, which requires the end-effector to exert a
prescribed force normal on a given surface and follow a
predefined motion trajectory attached to the surface. The
experiment setup is shown in Figure 6.

4.1.1. Polishing Demonstration and Data Collection. For pol-
ishing tasks, we adopt the method of kinesthetic teaching,
which allows a human to touch and handle the robot’s body
directly. Although the UR has force mode with external force
estimation, it cannot make a natural kinesthetic teaching due
to the imprecise force estimation. Traditional demonstration
methods are trajectory-based, which may cause separation
between the polishing head and the workpiece. Therefore,
we design a kinesthetic teaching method combining a PI
tracking controller and an admittance teaching controller, as
shown in Figure 7. The robot is velocity controlled by

𝑞̇ = 𝐽−1𝑆𝑃𝑉𝑐 (11a)

𝑉𝑐 = [0 0 𝑉𝑛 0 0 0]𝑇 + 𝑉𝐹 (11b)

with

𝑉𝑛 = 𝐾𝐷𝑝 Δ𝐹𝑛 + 𝐾𝐷𝑖 ∫Δ𝐹𝑛 𝑑𝑡, (11c)

𝑀𝐷𝑎 𝑉̇𝐹 + 𝐷𝐷𝑎 𝑉𝐹 = 𝐹𝑠 (11d)

where 𝑞̇ ∈ R6 is the vector of joint velocities of robot
manipulator and 𝐽 ∈ R6×6 is the Jacobian matrix of the
robot from {𝐸} to {𝐵}. 𝑆𝑃 ∈ R6×6 is the projection matrix
for selecting a specified demonstration plane. 𝑉𝑐 ∈ R6

is the desired robot Cartesian velocity and 𝐹𝑠 ∈ R6 for
sensed wrench in {𝐸}. 𝐹𝑧 is the z-axis component of 𝐹𝑠.
A Butterworth low-pass filter is adopted to smooth wrench
signal. 𝑉𝑛 ∈ R is the normal adjustment in {𝐸} in order to
keep a constant contact force 𝐹𝑑𝑛 in {𝐸}.𝑉𝐹 ∈ R6 is generated
by admittance controller. 𝐾𝐷𝑝 , 𝐾𝐷𝑖 ∈ R are the proportional
integral parameters of the PI controller. 𝑀𝐷𝑎 , 𝐷𝐷𝑎 ∈ R6×6
are themass-damper parameters of the admittance controller,
which are set by trials.

As the manipulator moves slowly, the effect of inertia
force is ignored.The force analysis of end-effector is 𝐹𝑒 = 𝐹𝑠 +𝐹ℎ, where𝐹ℎ ∈ R6 is the force that a human exerts on the end-
effector and 𝐹𝑒 ∈ R6 for reactive force from environment.
The robot movement data are recorded versus time during

t = 0 t = 15s t = 30s

(a) Demonstration

t = 0 t = 15s t = 30s

(b) Replay

Figure 8: Demonstration of polishing. (a) Kinesthetic teaching for
a trajectory. (b) Replay the teaching movement and record position
and force data.

demonstration. Then the robot replays previous movement
trajectory without human guidance. The force analysis of
the end-effector is as 𝐹𝑒 = 𝐹𝑠 = 𝐹𝑒. So we obtained the
force profiles with human experience. Position and forcewere
recorded as demonstration information.

Kinesthetic teaching is adopted based on control law
of (11a), (11b), (11c), and (11d) and Figure 7. The parameter
values for controllers are 𝐾𝐷𝑝 = 2.5 × 10−4, 𝐾𝐷𝑖 = 1.9 ×
10−4, 𝑀𝐷𝑎 = 𝐼6×6 × 104, 𝐷𝐷𝑎 = 5𝐼6×6 × 103. To learn the
profiles of interaction force from human polishing on the
workpiece in Figure 6, we chose polishing path including
36 segments, which were generated by the projection matrix𝑆𝑃 in 36 vertical planes of equal spaced angle 10∘. We
demonstrated polishing trajectories with human guiding the
polishing head as illustrated in Figure 8(a). Joint motion data
were recorded. Then the robot replayed previous movement,
shown in Figure 8(b), while normal contact force/torque 𝐹𝑝 ∈
R, position 𝑥𝑝 ∈ R3, and velocity 𝑥̇𝑝 ∈ R3 of the center
point of polishing disc were recorded simultaneously at 125
Hz. Each path was demonstrated 5 times.

4.1.2. Model Learning. Before learning the model, the dataset
was preprocessed by the DTW algorithm to align 5 demon-
strations over time in same path. We acquired a training
dataset {𝑥𝑖𝑝 , 𝑥̇𝑖𝑝, 𝐹𝑖𝑝}𝑁𝑖=1 composed of𝑁 datapoints. A task com-
pletion rate was defined to describe same path performing as𝛼𝑖 = 𝑖/𝑁, 𝛼𝑖 ∈ [0, 1]. We chose {𝛼𝑖}𝑁𝑖=1 for GMM input and{𝐹𝑖𝑝}𝑁𝑖=1 for output components in (5a). GMM and GMR were
adopted to learn the internal correlation. The learning result
of mapping 𝛼 󳨀→ 𝐹 was shown in Figure 9. The standard
deviation 𝜎𝐹 of contact force 𝐹 conditional distribution was
recorded as a function of 𝛼. Noticed that there was a one-
to-one correspondence between the task completion rate 𝛼𝑖
and position 𝑥𝑝 for same path demonstrations, we could
obtain the mapping function 𝑓(𝑥) = [V̂, 𝐹, 𝜎𝐹], V̂ ∈ R1×𝑁
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Figure 9: The GMM and GMR learning for one path polishing.
Left: the demonstrations for the polishing path are repeated 5
times. Middle: GMM is trained to approximate the joint probability
distribution 𝑝(𝛼, 𝐹) by EM algorithm using BIC for 5 Gaussian
components. The green cross marks refer to the mean of each
Gaussian model. Right: GMR policy is derived based on the GMM;
the blue region is the the 3𝜎 confidence interval of the contact force
distribution.
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Figure 10: Mapping policy of 𝑥𝑝 󳨀→ 𝐹. (a) GMR result for 36
groups of mapping. The colors of these lines attached to the surface
refer corresponding value of contact force 𝐹 along with the position𝑥𝑝. (b) GP regression result for the whole surface mapping from
position to contact force.

for the polishing speed. In the same way, there were 36
groups of mapping function 𝐹() : 𝑥 󳨀→ {V̂𝑎, 𝐹𝑎, 𝜎𝐹𝑎}36𝑛=1. The
mapping policy of 𝑥 󳨀→ 𝐹𝑎 was shown in Figure 10(a) for 36
trajectories. To get mapping policy of the whole surface, we
performedGP regression [32] to solve this problem, as shown
in Figure 10(b).

4.1.3. Polishing Autonomous Executions. In the task exe-
cution phase, we chose an arbitrary polishing trajectory
in Figure 12(a) by an interactive path generation method,
which was developed on the Visualization Toolkit (VTK)
with the 3D model of the workpiece. It is also available for
kinesthetic teaching to generate polishing path. Based on the
position of this trajectory, parameters of {V̂𝑒, 𝐹𝑑, 𝜎𝐹𝑑} were
predicted by the previous learned model. An adaptive hybrid
force/position control law in Figure 5 was adopted to track
this trajectory and generated contact force.The parameters of
force controller were set as 𝐾𝑓0𝑝 = diag(1.6𝐼3×3 × 10−4, 03×3),𝐾𝑓𝑖 = diag(3𝐼3×3×10−4, 03×3).The constraint selection matrix
S𝑝 = diag(0, 0, 1, 0, 0, 0) referred to normal constraint relative
to the workpiece. The snapshots were illustrated in Figure 11,
with force tracking result shown in Figure 12(b).

Figure 11: The snapshots for polishing execution with 10s interval.
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Figure 12: Trajectory generation and force tracking with adaptive
hybrid force/position control. (a) Interactive trajectory generation
for the surface polishing. (b) Contact force tracking using adaptive
PI controller with 2 trials in different values of 𝐾𝑓𝑝 . The blue region
is the 3𝜎 interval of the contact force distribution and the black line
is the desired force. The RMSE of the force tracking error is 1.58N
for red curve.

We could evaluate the task performance by the force
tracking result in Figure 12(b). The performance of task
executions is evaluated by the proportion of real contact
force in the confidence interval shown as the blue region. It
accounts for 90.3% time proportion in the whole execution.
The tracking result shows an excellent performance relative
to the reference force distribution.

4.2. Peg-In-Hole Assembly. To evaluate the proposed frame-
work, several experiments of peg-in-hole assembly were
carried out on UR-3 arm. We designed a series of pegs
and holes of stainless steel with different fit tolerances and
dimensions, shown in Figure 13(a) and Table 1. Holes are with
the same depth of 30 mm. Each peg is individually fixed on
an elastic mechanism, which is a passive compliant device of
rectilinearmotion andmounted on theOptoForce F/T sensor
as Figure 13(b).

4.2.1. Collaborative Insertions for Data Collection. Peg 1 and
hole 1 were chosen for assembly demonstration group.
We proposed a procedure for peg-in-hole assembly, which
included three phases as Figures 13(b)–13(d). Firstly the peg
moved towards the hole surface and made a constant contact
force, with uniform distributed deviations of position Δ𝑥 ∈[−6 mm, 6 mm] and rotations in [−20∘, 20∘] along 𝑥 and 𝑦
axis. Then an Archimedean spiral movement was adopted
to search the hole until the 𝑧 axis value of the force sensor
decreased suddenly or 𝑥 and 𝑦 axis force value was above a
certain threshold. Finally, a demonstrator pressed the button
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Table 1: Holes and pegs with different fit tolerances and dimensions.

Hole 1 Hole 2 Hole 3 Hole 4 Hole 5 Hole 6 Peg 1 Peg 2 Peg 3
Tolerance H7 F7 E7 D7 H7 H7 h6 h6 h6
Dimension
mm(SI) 𝜙10+0.0150 𝜙10+0.028+0.013 𝜙10+0.04+0.025 𝜙10+0.055+0.04 𝜙8+0.0150 𝜙12+0.0180 𝜙100−0.009 𝜙80−0.009 𝜙120−0.011

1 2 3

1 2

3 4

5 6

(a)

hole
peg
RCC
sensor

UR-3

(b) (c) (d)

Figure 13: Experiment setup and demonstration phase by collaborative insertions. (a) The three pegs and six holes. (b) The peg is moving
towards the hole. (c) Searching the hole by an Archimedean spiral movement. (d) Collaborative insertions.

of the end-effector to enable a free-drive mode of the UR
arm, which was implemented by joint torque estimation and
allowed the demonstrator to guide the peg into the hole, as
shown in Figure 13(d).

In assembly tasks, the demonstrator’s hands adjusted
the position and orientation of the peg based on wrench
feedback. We recorded sensed torque𝑀 = [𝑀𝑥,𝑀𝑦]𝑇 along
with the angular velocity 𝜔 = [𝜔𝑥, 𝜔𝑦]𝑇 of peg with a
sampling rate of 125 Hz during 20 groups of collaborative
insertions. 𝑀𝑥, 𝑀𝑦 ∈ R1×𝑁 and 𝑤𝑥, 𝑤𝑦 ∈ R1×𝑁 were
the sensed torque and angular velocity in Cartesian space,
respectively.

4.2.2. Adjustment Policy Learning. GMM was trained with𝑀 ∈ R2×𝑁 input and 𝜔 ∈ R2×𝑁 output in (5a) by
EM algorithm. BIC was used for the optimal Gaussian
components. Figure 15 showed the GMM distributions of{𝑀𝑥, 𝜔𝑥}.The conditional distribution of the angular velocity
was 𝜔̂ ∼ 𝑝(𝜔 | 𝑀) from (5a). Thus for a certain torque𝑀, the angular velocity could be calculated for the robot
movement. Using (7), we could acquire the GMR technique:
𝜔̂ = 𝐸{𝑝(𝜔 |𝑀)}.
4.2.3. Peg-In-Hole Autonomous Executions. Adjustment for
the position 𝑥 and orientation 𝑅 ∈ R3×3 of the peg is the key
to insertion. The control scheme of Figure 5 is also adopted
with F/T feedback 𝐹𝑐 = [𝐹𝑎,𝑀𝑎]𝑇, 𝐹𝑎 ∈ R3×1 and 𝑀𝑎 ∈
R3×1. In addition, a torque controller is specially designed
for orientation adjustment. The orientation 𝑅 of the peg is
calculated by the angular velocity 𝜔𝑎 = [𝜔𝑥, 𝜔𝑦, 𝜔𝑧]𝑇 as

𝑅 (𝑡 + Δ𝑡) = (Δ𝑡𝑆 (𝜔𝑎) + 𝐼3×3)𝑅 (𝑡) (12a)
with the skew-symmetric matrix

𝑆 (𝜔𝑎) = [[[
[

0 −𝜔𝑧 𝜔𝑦𝜔𝑧 0 −𝜔𝑥−𝜔𝑦 𝜔𝑥 0
]]]
]

(12b)

where Δ𝑡 is the control time step 0.008s and 𝐼3×3 for a
unit matrix. To compare our approach of LfD with random
searching that did not use human experience, we design four
kinds of torque controllers as follows:

(i) A: Angular velocity obeyed an uniform distribution
𝜔̂ ∼ U(𝑎, 𝑏), where 𝑎 is chosen to 𝑎 = 02×1 and 𝑏 =[𝜎𝑥, 𝜎𝑦]𝑇 is selected from the covariance matrix in the
GMM.

(ii) B: Gaussian distribution 𝜔̂ ∼ N(𝜇𝐵,Σ𝐵) with con-
stant value of 𝜇𝐵 = [0, 0]𝑇 and Σ𝐵 = [0.1, 0.1]𝑇.

(iii) C: GMM for 𝜔̂ ∈ 𝑝(𝜔 |𝑀) based on sensed torque.
(iv) D: GMR for 𝜔̂ = 𝐸{𝑝(𝜔 |𝑀)}.
The autonomous executions are performed including

four phases:

(i) Moving towards the hole surface as Figure 14(a).
(ii) Searching the hole as Figures 14(b) and 14(c) with

constant contact force along 𝑧 axis.
(iii) Macro orientation adjustment. The torque controller

is chosen as 𝜔̂ = −3Σ𝐵 sign(𝑀) to minish the
orientation error in a large scale until the contact
torque is less than a threshold value 𝑀0 = 0.1Nm.

(iv) Micro adjustment based four kinds of torque con-
trollers in Figures 14(e)–14(g). A decreasing function𝛾(𝛼) = (1 − 𝛼2)𝑒−𝛼2 is designed to reduce the
contact force based on the task completion rate 𝛼.
Then the reference angular velocity is written as𝜔̃ = |𝛾(𝛼)𝜔̂|sign(𝑀) with (12a) and (12b) adjusting
orientation 𝑅.

It is noticed that the force controller is working in the third
and fourth phases to achieve a compliant interaction. And
in the fourth phase, the reference angular velocity 𝜔̃ is the
same positive or negative value with the sensed torque 𝑀.
The position 𝑥 and orientation 𝑅 are controlled by the sensed
force 𝐹𝑎 and torque 𝑀𝑎 respectively. Desired contact force is
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(a) (b) (c) (d) (e) (f) (g)

Figure 14: The snapshots for peg-in-hole execution. (a) Moving towards the hole. (b) and (c) Searching hole. (d)–(g) Adjustment based on
sensed wrench.

Table 2: Result comparison of insertions for different controller.

Rate of success (%) Avg. completion
time (s)

Norm of contact force
mean (std.dev) (N)

Avg. energy
consumption (J)

A 64 20.1 8.5 (4.5) 1847
B 56 30.1 7.0 (4.6) 2433
C 88 15.2 11.1 (6.2) 1483
D 40 38.5 4.1 (3.5) 2204

set constantly as 𝐹𝑑 = [0, 0, 𝐹0𝑧 ]𝑇 to push the peg into the hole.
The force controller is realized by a PI controller to minish
the contact force along 𝑥𝑦 axis and keep a constant force
in the vertical direction, while torque controller is designed
by four kinds of adjustment strategies. The parameters of
the PI controller are set as 𝐾𝑎𝑝 = diag(5, 5, 8) × 10−5, 𝑘𝑎𝑖 =
diag(2, 2, 3) × 10−5, 𝑆𝑎 = diag(1, 1, 1, 1, 1, 1).

Two sets of experiments were carried out to evaluate
our approach. The first one was conducted for comparing
the performance of the same peg and hole. The second one
was set for validating the generalization capabilities of the
proposed approach based on GMM learning with different fit
tolerances and dimensions, using peg 1 for hole 1 to 4 and pegs
2, 3 for holes 5, 6 correspondingly. Each group was performed
on 25 trials for equally spaced orientation at [−20∘, 20∘] and
position error at [−6 mm, 6 mm]. Holes 1-4 share the same
dimension and different tolerances, and peg 1 - hole 1, peg 2 -
hole 5, peg 3 - hole 6 are with different dimensions and same
tolerance fit.

The performance of peg-in-hole assembly can be eval-
uated by several aspects, the rate of success, the average of
the task completion time, which means the adaption and
efficiency of task executions, the norm of the contact force,
and the average of energy consumption, which determines
the compliant interaction quality.

The result for the first set of experiments is shown in
Table 2 with hole 1 and peg 1. A phase diagram of autonomous
execution is presented in Figure 15. The controller C is sam-
pling from the conditional distribution 𝜔̂ ∈ 𝑝(𝜔 | 𝑀) based
on learned model, while controllers A and B are sampling
from static distributions. The controller C achieve a higher
rate of success and a lower completion time than others,
while the controller C is along with higher contact forces. It is
acceptable for the improvement of assembly efficiency. The
lower average of energy consumption is calculated by (10)
and mainly due to the less completion time. The controller

−0.5

0

0.5

Ve
lo

ci
ty

w
x

(r
ad

/s
)

−0.1

0.1

0

0 2−2
Mx (Nm)Mx (Nm)

0 5−5

Figure 15: The GMM learning result and once peg-in-hole execu-
tion. Left: GMM for {𝑀𝑥, 𝜔𝑥} in 𝑥 axis. The gray sample points are
20 groups of data of collaborative insertions for the peg 1 and hole 1.
The red ellipse refers to the 3𝜎 confidence interval of GMM. Green
crosses are the center points of GMM. Right: phase diagram for
once auto execution with contact torque and angular velocity in 𝑥
axis, with the circle block for starting point and the square block for
ending point.

D uses GMR for the real-time angular velocity calculating.
It has the lowest rate of success and highest time. The main
reason is that the fitting clearance of peg 1 and hole 1 is about
0.01 mm. Such small clearance can easily cause the assembly
getting stuck. However, the controllers A, B, and C generate
the angular velocity by random numbers, which may get rid
of getting stuck in static conditions. Random disturbances
contribute to precision assembling. Another reason may be
on account of the inaccuracy of the sensed torque or errors in
the learned model.

For the second set of experiments, the six groups of
experiments show similar results in Table 3, all of which
indicate a better performance relative to the group of the
first set. Clearly, the approach learned from collaborative
insertions of peg 1 and hole 1 can be well transferred to
situations of different dimensions and tolerance fit.

4.3. Discussion. Two typical force-relevant experiments were
set up to validate our learning framework successfully. Pol-
ishing autonomous executions were conducted according to
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Table 3: Result comparison of insertions for different tolerance fit or dimensions.

Hole Rate of success (%) Avg. completion
time (s)

Norm of contact force
mean (std.dev) (N)

Avg. energy
consumption (J)

1 88 15.2 11.0 (6.2) 1483
2 76 14.5 11.2 (6.3) 1413
3 80 15.4 10.8 (6.5) 1568
4 88 12.5 11.7 (6.4) 1336
5 88 14.1 11.1 (5.7) 1464
6 76 14.5 11.7 (6.1) 1531

learned model, with high force and position tracking perfor-
mance. In peg-in-hole assembly experiments, adaptation and
generalization capabilities were achieved for GMM learning.

While we have demonstrated the effectiveness with two
experiments, there are still some limitations with current
learning approach. Demonstrations for the polishing task of
complex surface are a little tedious and time-consuming as a
result of kinesthetic teaching and the replay. The back-drive
teaching of assembly is also less natural than human direct
teaching. In learning phase, we mainly use GMM to learn
the correlation between the interaction force and the motion.
Other learning algorithms may need to be compared with
GMM. For the peg-in-hole assembly, execution time is still
over time for industrial application. Parameters of controllers
need to be improved in detail.

5. Conclusion

In this paper, a novel framework for learning force-relevant
skills from human demonstration is proposed. The motion
and force profiles during humandemonstrations are recorded
and learned as a statistical model to encode the force-relevant
skill. Upon the learned model, a task planner is devised
to offer the initial task policy. Furthermore, an adaptive
force controller is proposed to adapt the motion of the
robots according to the sensed force and the initial task
policy. The proposed approach is demonstrated with two
experiments (namely polishing and assembly) to showcase its
effectiveness. In the future, we are planning to take more task
constraints and sensor modalities into account.
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