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Non-linear contour tracking using
feedback PID and feedforward position
domain cross-coupled iterative
learning control
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Abstract

In this paper, a position domain cross-coupled iterative learning controller combining proportional-integral—derivative (PID)-type iterative learning
control (ILC) and proportional-derivative (PD)-type cross-coupling control (CCC) is presented aiming at non-linear contour tracking in multi-axis
motion systems. Traditional individual control methods in the time domain suffer from poor synchronization of relevant motion axes. The complicated
computation of coupling gains in CCC and cross-coupled ILC (CCILC) restricts their applications for non-linear contour. The proposed position
domain CCILC (PDCCILC) approach introduces a position domain design concept into CCILC to improve synchronization and performance for non-
linear contour tracking and it relies less on the accuracy of coupling gains than conventional CCILC. The stability and performance analysis are con-
ducted using a lifted system representation. The contour error vector method is applied to estimate the coupling gains in simulations and experiments.
Simulation and experimental results of three typical non-linear contour tracking cases (i.e. semi-circle, parabola and spiral) based on a two-axis micro-
motion stage demonstrate superiority and efficacy of the proposed feedback PID and feedforward PDCCILC compared with existing ILC and CCILC

in the time domain.
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Introduction

The rapid development of modern industries has resulted in
increasing research on high-accuracy manufacturing systems.
For a multi-axis system, the motion precision depends on both
the individual axis and contour errors. The latter is defined as
the distance between the actual position and the nearest point
in the reference trajectory (Koren and Lo, 1991).

A conventional control strategy for a multi-axis motion
system is independent axis control. A great deal of worthy
efforts, such as proportional-integral-derivative (PID) con-
trol (Devasia et al., 2007), robust control (Raafat and
Akmeliawati, 2012), sliding-mode control (Shen et al., 2014),
iterative learning control (ILC; Wang et al., 2015), repetitive
control (Shan and Leang, 2012) and polynomial-based pole
placement control (Aphale et al., 2008), have been devoted to
solving decoupled control problem. However, good tracking
performance of each individual axis does not guarantee the
reduction of contour errors for multi-axis systems, as poor
synchronization of relevant motion axes may result in dimin-
ished accuracy of the contour tracking performance (Ouyang
et al., 2012). To achieve high-precision contour performance
for multi-axis systems, contour error rather than individual-
axis error should be emphasized primarily. Cross-coupling
control (CCC), developed by Koren (1980), utilizes
coupling gains to couple the individual-axis errors of single-
input-single-output (SISO) systems together. Barton et al.

(Barton and Alleyne, 2006, 2008; Barton et al., 2011) com-
bined CCC with individual-axis ILC to develop a cross-
coupling iterative learning control (CCILC) to improve both
individual-axis and contour tracking performance in repeti-
tive processes. However, in the CCILC design, the synchroni-
zation between axes and the overall contour tracking
performance rely heavily on the choice of coupling gains.

For non-linear contours like a circle, parabola and spiral,
which are common in 3D printers (Wei et al., 2016), nano-
lithography (Paul et al., 2011), nano-precision scanners (Chen
et al., 2015; Tuma et al., 2013) and so on, the cross-coupling
gains are time-varying and thus difficult to compute out conve-
niently and precisely. The variable-gain CCC was proposed by
Koren and Lo (1991, 1992) for non-linear contour tracking by
applying circular contour approximation for arbitrary contour
applications. To improve computational efficiency for arbi-
trary contours in the CCC approach, Yeh and Hsu (2002)
developed a modified variable-gain CCC based on the contour
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error vector. The modified method requires fewer operators
than the original and may be directly extended to multi-axis
motion systems. However, this vector method is an estimation
of contour error instead of a precise computation. Any compu-
tation inaccuracy of coupling gains may result in weakened
tracking performance in a CCILC control system. Therefore,
the complicated computation of coupling gains restricts the
applications of CCILC into non-linear contour tracking cases.

For multi-axis precision control in 3D nanopositioning,
Tien et al. (2005), Wu et al. (2009) and Yan et al. (2012)
extended the ILC technique from SISO systems to multi-
input-multi-output systems to produce a multi-axis inversion-
based iterative control (MAIIC) approach. This is effective
for precision tracking in all 3D axes in the presence of a pro-
nounced cross-axis dynamics coupling effect. The plant inver-
sion learning function converges quickly but relies heavily on
modelling and is sensitive to model uncertainty, while the
PID type ILC is a tunable design that may be applied to a
system without extensive modelling and analysis (Bristow,
2006). For different systems, the two types of ILC need to be
chosen based on different control problems. Our focus in this
paper will be on multi-axes PID type ILC design for the
micro-positioning stages, of which the mechanical resonant
changes with the increase of load.

Being different from the aforementioned controllers
designed in the time domain (abbreviated as TD for the sake
of simplicity), Ouyang et al. (Ouyang and Dam, 2011; Ouyang
et al., 2012, 2013) proposed a technique of position domain
control (PDC) for contour tracking in multi-degree-of-freedom
(multi-DOF) robotic systems. A multi-axis motion system in
position domain contour control is treated as a master—slave
co-operative motion system to guarantee synchronization and
improve the contour tracking performance. The PDC was
tested effective in contour tracking cases without the problem
of coupling gain computation in CCC design. However, all the
PDC controllers proposed by Ouyang et al. focused on feed-
back control. For repetitive tasks, a position domain feedback
PID may not achieve optimal performance.

Motivated by non-linear contour tracking in repetitive
tasks for a multi-axis motion system, we aim to apply the esti-
mated contour error vector method proposed in Yeh and
Hsu (2002) into CCILC to extend its applications. To guaran-
tee the tracking performance under computation inaccuracy
of coupling gains, we propose to design a CCILC in the posi-
tion domain to produce a PDCCILC controller. The pro-
posed PDCCILC may take advantage of the CCILC (i.e.
small contour tracking errors) and position domain design
procedure (i.e. good synchronization between axes) to achieve
ideal tracking performance for non-linear contours. Our pre-
vious work (Ling et al., 2015) proposed the basic PDCCILC
framework for linear contour tracking. Simulation results
verified its effectiveness based on an identified model of the
nanopositioning stage. Contributions of this paper lie in: 1)
the proposal of combined feedback PID and feedforward
PDCCILC design; 2) the extended applications of CCILC
into non-linear contour tracking cases under computation
inaccuracy of coupling gains when estimating the contour
error through contouring error vector method in Yeh and
Hsu (2002); 3) the experimental demonstration of the pro-
posed algorithm into a multi-axis precise motion stage.

The outline of this paper is as follows. The next section
gives a brief review of CCILC and PDC before introducing
PDCCILC. Then, the stability and performance of a com-
bined feedforward PDCCILC and feedback PID control sys-
tem for non-linear trajectory are analysed. Simulation and
experimental results with comparison between existing time
domain controllers and the proposed PDCCILC are pre-
sented, followed by conclusions and possibilities for future
work.

Position domain cross-coupled iterative
learning control

Contour error computation and estimation

CCC is a technique to reduce contour error by choosing
appropriate coupling gains and coordinating the motion of
two coupled axes. Determining coupling gains is vital in
CCC, as they are used to calculate contour error and allocate
control signal to the individual axis. In an xy-plane contour
tracking case, contour error € may be computed by:

e= —Ceey + Cyey (1)

For a non-circular contour, a modified variable-gain CCC
design based on the contouring error vector was proposed in
Yeh and Hsu (2002). The geometrical relations of biaxial
motion systems among the desired contour, the actual posi-
tion P and the reference position R in a biaxial system are
shown in Yeh and Iisu (2002, figure 3). The estimated con-
touring error vector ¢ is defined as the vector from the actual
position to the nearest point on the line that passes through
the reference position tangentially with direction 7. The vec-
tors may be directly derived as

7= {;] )
Y
_ t,
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ny t§X+ [
T =2 = (2, W) 7. 4)

where (-, -) is an inner product operator. As its simplified com-
putation for coupling gain, the modified variable-gain CCC
will be adopted in the following design of PDCCILC.

Cross-coupled iterative learning control

The CCILC algorithm may be approached by associating ILC
with CCC. A general CCILC structure is presented in Barton
and Alleyne (2008). A control law combining an individual-
axis ILC algorithm for x- and y-axes with CCILC law was
given in Barton et al. (2011) as

e
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where u is the control signal, Q a filter, L the learning func-
tion, e the individual-axis tracking error and C the coupling
gain matrix. The subscripts x, y and ¢ represent the x-axis, y-
axis and the overall contour, respectively.

Feedback position domain PID control

In an xy-plane contour tracking case, the master motion
yields zero tracking error because it is sampled equidistantly
and used as a reference, and only tracking errors caused by
the slave motions will affect the final contour tracking errors
(Ouyang and Dam, 2011). A proportional-derivative (PD)-
type feedback control signal u,(x) of the y-axis (slave motion)
in the position domain is related to the x-axis position (mas-
ter motion), which may be expressed as

uy(x) = Kley(x) + Ky"e;.(x)
ey(x) = ya(x) — y(x) (6)
€,(x) = yu(x) =)/ (x)

where K and K;i are the proportional and differential gains,
and e, is the y-axis tracking error (Ouyang et al., 2012). It
should be noticed that the position domain PD law uses the
x-axis position as a reference rather than time.

Control law of PDCCILC

For a two-input-two-output, linear time invariant (LTI) sys-
tem, the PDCCILC control signal of x- and y-axes may be

given as

where j is the iteration index, #?? the control signal of the
PDCCILC controller, the superscript pdc is PDCCILC, Q is
a low-pass filter to improve the control system robustness, L
the learning function, e,(z) the tracking error of the x-axis
versus time, and e,(¢) and &(x) the tracking error of the y-axis
and contour versus the x position.

There are some popular algorithms for designing the learn-
ing function in ILC and CCILC. The PID-type learning func-
tion may be applied to a system without extensive modelling.
The plant inversion learning function converges quickly but
relies heavily on modelling and is sensitive to model uncer-
tainty. The H. design technique may be used to design a
robustly monotonically convergent ILC but at the expense of
performance (Bristow et al., 2006). Although it cannot con-
verge as quickly as the model inversion method, we adopt the
|
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PID-type learning function in our PDCCILC design, as we
focus more on the model independence and the convenience
of tuning parameters. Applying PID-type ILC and PD-type
CCC, the ILC term and CCC term of the control law in (7)
may be substituted as

rt

Lee(t) = ke, (1) + k;'fJ ex(t)dt + kie,(1)

t—At

ile ile * ile 8

Lyey(x) = kp;,ey(x) + kl.; J X e,(x)dx + kdg,e;(x) (8)
Lua(x) = KSa(x) + K558 ()

where kg:f, kile, kite, kg)c,, kﬁf and k’dl; are the PID gains for the
x- and y-axes ILC controller, k,.* and kg are the PD gains
for CCC controller.

To implement the control law in the physical system, the
integral and differential items need to be discretized. An
approximate calculation was made before discretization,

shown as

[ etoa=S e + a0 o)
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where &(¢) = e(¢t — At). It should be mentioned that Equation
(12) is sensitive to the noise under a low speed of master axis
motion before the approximation. This problem is solved
using the sampling distance of the master motion Ax in the
chosen time At.

Substituting (8)—(13) into (7) yields the control law for the
X-axis as
ubde (t) =

Xt
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It may be seen from (15) and (17) that the position informa-
tion of the x-axis is integrated into the control signal to guar-
antee the synchronization between the master and slave
motions. This is the difference between conventional CCILC
in the time domain and the proposed PDCCILC design.

Combined feedback PID with feedforward
PDCCILC

In this section, the lifted system framework is reviewed first
for the following analysis. Then, the recursion formula of the
control signal in a combined PDCCILC and PID control sys-
tem for non-linear contour tracking ise given. Stability, con-
vergence properties and performance analysis are conducted
based on the lifted system representation.

Lifted system representation

The lifted matrix is a method that analyses system stability
and convergence using matrix representation of the time-
domain system dynamics (Barton et al., 2011). Compared
with the general approach for system analysis in the frequency
domain, the lifted system matrix is advantageous on analysing
time-varying (LTV) dynamics. The PDILC algorithm for the
y-axis in this paper contains LTV parameters and therefore
the lifted matrix method is adapted.

Consider the discrete-time, linear time-invariant SISO
system:

(18)

where k is the time index, j the iteration index, y; the output,
u; the control signal, d the exogenous signal, P(g) the system
transfer function with a time delay and ¢ the forward time-
shift operator gx(k)=x(k + 1).

Applying an impulse input to the system dynamics of (18),
the lifted matrix representation may be formed as (19).

yi(k) = P(q)u;(k) + d(k)

where Y, P, U; and D are the lifted representation of y;, P(q),
yjand d w1th a matrix form, respectively (Barton et al., 2011).
It should be mentioned that the components of ¥; and D are
shifted by one time step to accommodate the one-step delay in
the plant, which ensures that the diagonal entries of P are
nonzero. For an m-step delay, the lifted system representation
of Y;and D then start from y,(m)and d(m). As all of the entries
along each diagonal are identical, the lifted framework may
easily accommodate LTV dynamics.

Combined PID and PDCCILC design

A combined feedback and feedforward control structure is
more effective in precision motion control (Ahn et al., 2007,
Devasia et al., 2007, Raafat and Akmeliawati, 2012; Shan
and Leang, 2013; Shen et al., 2014). Among feedback control
algorithms, PID is commonly used in industrial processes
because of its simplicity and the ease of implementation (Ang
et al., 2005). By applying a PID technique as the feedback
controller and PDCCILC as the feedforward controller, the
control signal convergence and contour errors elimination
may be achieved effectively.

The combined PID and PDCCILC design for a two-DOF
system is shown in Figure 1. The x-axis is chosen as the master
motion and the y-axis is the slave motion. The position track-
ing errors of slave motion versus master motion position are
learned by PDCCILC as the master motion position informa-
tion is integrated into the controller.

To discuss the convergence and error performance in (14)
and (16), the recursion formula of control signal should be
derived. The error items of e(¢) may be substituted as

Feedforward
PDCCILC

Figure |I. Combined feedback proportional-integral-derivative (PID)
and feedforward position domain cross-coupled iterative learning
control (PDCCILC) control structure.



1974

Transactions of the Institute of Measurement and Control 40(6)

e,=rd7r=rdf(ufdc+uf"d)-P,fdr (20)
where r € {x,y}, #’® = e, -K, is the control signal of PID
controller with X, = kgid + AP kgid -s, P, is the trans-
fer function of axis and the &(¢) may be substituted as
&y =g — 7 =iqg— (% + ). P, — d, (21)
where 74, P, and d, represent the signal and system transfer
function with a time delay of A¢. Here, e and e are short for
e(t) and &(¢) for briefness.
Solving Equations (20) and (21) generates

[ :Sr'(rd_dr)_Sl”Pr'ulrfdc (22)

o= —K.SP. - (rg —dy) — S,Pab® + (7y —d,)  (23)
where S, = (1 + KFP,.)f1 is the sensitivity transfer function of
the axis system dynamics.

Substituting (22) and (23) into (14) and (16) yields the
recursion formula of PDCCILC control signal for the x- and
y-axes as

uPe (£) = M, - uP%(f) + Ny

541 %
e (1) =M, - ui’d"(t) + N,
7

Yi+1

(24)

where

M, = 0.(1 — a,S,P, — B,S.P,)
Ny = O[S, = BKSP) - (ra = dy) + By (a — )]
(25)

Stability, monotonic convergence and performance

Equation (25) then may be converted into lifted matrices using
the impulse response as

M, = Q,(I - ,S,P, — B,S.P,)
N, = Q,[(@S, ~ BKSP,) - (i~ d) + B,(7s — d)
(26)

where M, and N, are N X N matrices, &, and B, are diagonal
matrices, rg, i'q, d. and J,. are N X 1 matrices.
Let p(4) = max|A;(A4)| be the spectral radius of the matrix
A and A (A) the kth eigenvalue of 4. The control system is
asymptotically stable (AS) if there exists appropriate para-
meters of PDCCILC and PID controllers satisfying
p(M,) <1 (27)
The spectral radius condition in (27) satisfies the stability cri-
teria, but does not ensure monotonicity in the iteration
domain. A sufficient condition for monotonic convergence of
the combined system is given by the upper bound value of the
induced norm as

a(M)<1 (28)

where
_ T
M=[M, M,]

is the combined matrix of the two axes. It should be noted
that p(M,) <& (M) for the matrix M. Thus condition (28)
ensures monotonicity and stability of the given system
simultaneously.

The performance of a control system is often judged by the
decrease from the initial error to converged error and conver-
gence speed. While the monotonic convergence condition is
satisfied, the asymptotic control input and steady state error
of the system may be computed in (29) and (30). In the follow-
ing simulation and experiment data analysis, the root mean
square (RMS) of the error is chosen as the evaluation index
for the proposed algorithm.

uilc(l) 1—m 0 0 -1 n(l)
ui(2) | Lm0 n(2)
uilc’(N) . —my  —my_ 1 —m n(N)
P M, N;
(29)
[e(1) r(1) )2 0 0
e(2) - r(2) P2 D 0
Le(N) |.. r(N) PN PN-1 D1
ﬁ,_/ \-ﬂr:——/ >
o ' (30)
ul/c(l) d(])
1" (2) d(2)
_uilc(N) " d(N)
N———
e d,

Overall computation procedure

The overall computation procedure of the proposed PID &
PDCCILC control is described in Figure 2. There are mainly
two stages concerning computation.

Stage 1 is the reference pre-processing. First, the reference
contour to be tracked needs to be discretized. The sampling
time ts is chosen according to two principles: 1) meeting the
Shannon’s sampling theorem, which is the upper limit; 2)
satisfying that the matrix size in (19) is within the PC’s mem-
ory capacity, which is the lower limit. The second step is the
determination of the time delay index Az in (9) and (10).

Stage 2 contains the lifted matrix computation. Before
computation, the Q-filter and PID & PDCCILC gains need
to be chosen. Then, the lifted matrix in (26) may be obtained
using Impulse and Toeplitz commands in MATLAB software.
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Stage 1:Reference |
pre-processing

| Eq.(9) & (10)

| se reference contour

Sequence in time domain of the
. master motion x(z) with a
| sampling time Interval ¢s

Determine the time |
I delay index 4¢ in

Singular value check
Ax(t) = x(t)-x(t-4t) in Eq.(12)

Sampling time is chosen according to
two principles:

1) Meet the Shannon's sampling
theorem; (upper limit of the ‘ts’ value) I
2) Make sure that the matrix size in [
Eq. (19) is within the PC’s memory :
capacity; (lower limit of the ‘ts’ value) |

4—Ye

Stage 2: Lifted matrix
computation

Lifted matrix

Determine Q-filter in
Eq.(14) & (16)

PID & PDCCILC
gains tuning in
Eq.(15),(17) & (20)

computation in Eq.(26)

Stage 3:Simulation

Performance
evaluation
Pass?

Experiments

Stage 4: Experiment

Performance
evaluation
Pass?

Figure 2. The overall computation procedure for the proposed proportional-integral—-derivative (PID) and position domain cross-coupled iterative

learning control (PDCCILC).

Evaluation: computation, simulation and
experiment

In this section, the combined PID and PDCCILC design was
evaluated through both simulation and experiment cases.

System description

As shown in Figure 3, the tested platform is a three-DOF pre-
cise positioning stage with a stroke of 50, 50 and 20 mm for
the x-, y- and z-axes, respectively. It is a serial system with its
each axis driven by a DC servo motor. The position

information of each axis is detected by a grating ruler with the
resolution of 0.5 wm. For such a commercial product, the
original controller is commonly designed decoupled for each
individual axis. Therefore, the contour error always exists, as
the synchronization between axes is not guaranteed. The pro-
posed PDCCILC design improves the contour error in this
testbed in the following sections.

Before simulations, the system model needs to be identi-
fied. In this work, only the x- and y-axes were selected for
simulation and experiment cases. Dynamic models of the
x- and y-axes were achieved through step response method
with a sample rate of 1 kHz. The continuous transfer func-
tions are:
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Figure 3. The three-degree-of-freedom precise positioning stage used
as the testbed.

—0.1402s + 5.291

52 + 5.795s + 5.564
—0.0631s + 2.132

p, = P T L02
Y2+ 2765 + 2.127

P, =

(31)

Then, the Q-filter in (14) and (16) for x- and y-axes is chosen.
The most generally applicable approach to achieving mono-
tonic convenience is to apply a low-pass Q-filter to disable
learning at high frequencies, as stated in Bristow et al. (2006).
From the bode plot in Figure 4, it may be found that the
bandwidth of the x-axis is very close to that of the y-axis, so
the Q-filter for the two axes is set the same. Here, we designed
a Butterworth low-pass filter with a cut-off frequency at
0.5 Hz in (32) according to the working bandwidth of the two
axes.

31.01

=0, = 2
=0 $3 + 6.283s2 + 19.74s + 31.01 (32)

Computation results

The monotonic convergence condition in (28) was computa-
tionally verified before simulations and experiments. Three

Table I. Controller parameters.

Gains
Controller K K; Ky
PID 3 | 0
ILC 0.3 0.1 0.1
CCcC | 0.5 0

PID, proportional-integral—derivative; ILC, iterative learning control;
CCC, cross-coupling control.

sets of non-linear reference contours were used to evaluate the
proposed PDCCILC as shown in Figure 5.

The maximum time length of the three reference contours
is 12 s. Setting the step size in simulations and experiments as
0.005 s, then the dimensions of the monotonic convergence
condition in (28) will be 2400 X 1200. This makes it compa-
tible with the memory and calculation capabilities in a normal
computer. If the matrix size is too big, some indirect compu-
tation methods may be applied, as described in Barton and
Alleyne (2008).

Following the above preparation work is the selection and
tuning of parameters in PID and PDCCILC. The well-known
Ziegler—Nichols method is adopted for tuning of the PID
parameters. Then, the most commonly employed method for
selecting the gains of the PID-type learning function is by
tuning, as described in Bristow et al. (2006).

For comparison with the proposed PDCCILC & PID, the
conventional TDCCILC & PID, the PDILC (set the CCC
gains in PDCCILC as zeros) & PID and the TDILC & PID
were applied in computation, simulation and experiment sec-
tions, and all the parameters of the four sets were set the same
as displayed in Table 1. It should be mentioned that sufficient
comparison work has been performed in Ouyang et al. (2012,
2013) between PDC and CCC, and the superiority of CCILC
has been verified in Barton and Alleyne (2006, 2008) and
Barton et al. (2011) compared with other control algorithms.
Therefore, we here focus on the comparison between
PDCCILC and TDCCILC in non-linear contour tracking



Ling et al. 1977
Semi-circle Contour Parabolic Contour Spiral Contour
0.2 0.2
= = € 02
E 015 E 015 £
£ < c o
S 0.1 S 0.1 2
o o o
o 0.05 o 0.05 O 91
> > >
0 0 -0.2
0 0.2 0.4 0 0.1 0.2 -0.2 0 0.2
X Position (mm) X Position (mm) X Position (mm)
oa (a) (b) (c)
T € 02 € X axis
E o3 E v1s5 ! \\ E o2} ===-vaxis f
c c ! c !
S S s ! S
= 0.2 P &S % 0.1 ! \ G
o) y N\ o 1} o
o / \ o ! o
2 01}, N g 0051 /) Vi e
X \ < ¢ 1} X
< 0 / RS < ol ) < )
0 2 4 6 8 0 5 10 0 5 10
Time (s) Time (s) Time (s)
(d) (e) ®

Figure 5. Reference contours. Contours in (a), (b) and (c) start from the bold dot and move along with the arrows; (d), (e) and (f) are the x- and

y-axes positions versus time of the three contours, respectively.

Table 2. Computational results of monotonic convergence. = T i
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The computational convergence results of the four sets of Ttecation
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illustrates, the upper bound condition of (31) is valid. > i —+— PDCCILC & PID
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Simulation results 2 ; MRS
Using the PID gains and learning functions presented in é
Table 1, three typical non-linear trajectories were used in ~ 5 a5 pr p & 105
simulations. The RMS contour errors versus iteration for the - Iteration
three type contours in the simulations are shown in Figure 6. ©
Figure 6(a) shows the RMS contour errors for the four sets

of controllers. The control system of PDCCILC & PID results
in a 93% decrease of the RMS contour error from the initial
to the last iteration, which is the best improvement among the

Figure 6. Root mean square (RMS) contour error versus iteration for
the three contours in the simulations: (a) semi-circular contour;
(b) parabolic contour; (c) spiral contour.
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Figure 7. Tracking results of the semi-circle contour in the experiments: (a) root mean square (RMS) contour error versus iteration; (b) the overall
look in the xy-plane; (c) contour errors versus x-axis position; (d) and (e) are the partial enlarged view of parts A and B in (b).

four sets. The TDCCILC & PID combination is superior to
the left controller sets in the iteration process.

Results of the parabolic contour tracking case are dis-
played in Figure 6(b). It may be seen that PDCCILC & PID
results in the best improvements from the initial to the last
iteration (about 93% decrease). The PDILC & PID set
achieves the second best performance, which is different from
the results of semi-circle contour tracking.

Results of the spiral contour tracking case are displayed in
Figure 6(c). The PDCCILC & PID combination results in a

98% decrease for the RMS contour error in the iteration pro-
cess, which is the best among the four. The TDCCILC & PID
achieves a similar result compared with PDILC & PID
control.

From the results of the above four sets of controllers, it
may be seen that the PDCCILC & PID may always achieve
the best performance among the listed four sets, whereas a
PDC or CCC alone may not guarantee a consistent result for
different non-linear contours.
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Figure 8. Tracking results of the parabolic contour in the experiments: (a) root mean square (RMS) contour error versus iteration; (b) the overall
look in the xy-plane; (c) contour errors versus x-axis position; (d) and (e) are the partial enlarged view of parts A and B in (b).

Experimental results

All the simulation cases were performed in the experimental
set-up as shown in Figure 3 to validate the above-mentioned
results. A National Instrument product (CompactRIO 9081)
was used for implementation of sensor signal acquisition and
control signal output. The specific statistics may be found in
Table 3.

Semi-circle contour. The results of semi-circle tracking are
shown in Figure 7. Analogously to the simulation results, the
combined PDCCILC & PID control system produces the best
tracking performance with a 97% decrease in the RMS con-
tour error. Furthermore, the convergence speed of PDCCILC
& PID is also the fastest (about 25 iterations). The partial
enlarged views of parts A and B are also compatible with
those of simulations.



1980

Transactions of the Institute of Measurement and Control 40(6)

RMS Contour Error (um)

-
o

©
-

——— PDCCILC & PID

PDILC & PID

TDCCILC & PID

TDILC & PID b

X Position (mm)

80 90 100

-0.2 -01 0 01 02 03

X Position (mm)

(c)

0 Il 1 1 N | | N
0O 10 20 30 40 50 60 70
Iteration
(a)
0.3 -
E -
—~ 0.2 e 0.01 5,
E« 0.1 E’
c : U 0
2 5
A 3
[e]
. 8 -0.01
h n
0.1 2
74
0.2 ] 0.02
02 01 0 01 02 03
X Position (mm)
(b)
0.27
p—— -0.186
. 0.265 .
€ £ -0.188
g £
c 026 = 019
S 5
2 0.255 ——e~— PDCCILC &PI 3 0192
& PDILC & PID & 0194
0250 Fuvarann. TDCCILG & PID i
TDILC & PID ©-
0.245 I . : . )
-0.05 0 0.05 0.1 0.1

-0.05 0 0.05

X Position (mm)
(e

Figure 9. Tracking results of the spiral contour in the experiments: (a) root mean square (RMS) contour error versus iteration; (b) the overall look
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Table 3. Experimental statistics of tracking performance.

Steady contour error Semi-circle Parabola Spiral
TDILC RMS (um) 3.405 3.637 7.566
MAX (um) 8.501 8.334 17.429
TDCCILC RMS (um) 1.869 1.924 4.897
MAX (um) 5.170 6.001 15.420
PDILC RMS (wm) 1.344 1.197 2.992
MAX (um) 4.348 4.696 11.106
PDCCILC RMS (wm) 0.821 0.631 1.551
MAX (um) 2.108 2.907 7.240

TDILC, time domain iterative learning control; RMS, root mean square; TDCCILC, time domain cross-coupled iterative learning control; PDILC,
position domain iterative learning control; PDCCILC, position domain cross-coupled iterative learning control.
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The increase in experimental RMS error values is to be
expected due to model uncertainty in system identification
that appears in the actual system and the external
disturbance.

Parabolic contour. Figure 8 presents the experimental results
of parabolic contour tracking cases. A 93% decrease is
achieved by PDCCILC & PID combination and the improve-
ment from TDCCILC to PDCCILC is 16%.

Spiral contour. Figure 9 displays the tracking results of the
spiral contour in the experiments. As seen, the PDCCILC &
PID combination achieves the smallest steady contour RMS
error (about 1.552 wm) and the fastest convergence speed (less
than 20 iterations) among the four. The decrease from the ini-
tial to the last iteration under PDCCILC & PID is 98%.

Conclusions

This paper has presented the basic framework of PDCCILC
& PID design and demonstrated the tracking performance
benefits for a combined PDCCILC & PID control system for
the three typical non-linear contours. The stability and con-
vergence conditions were discussed in a lifted matrix represen-
tation. The best contour tracking performance improvements
were obtained from the combined PDCCILC & PID com-
pared with TDCCILC & PID, PDILC & PID and TDILC &
PID. These results were supported by experimental data from
an actual experimental multi-axis system. Simulation and
experiment results of semi-circle, parabola and spiral pattern
tracking show that RMS errors under PDCCILC & PID all
led to more than a 90% decrease from the initial to the last
iteration. The proposed PDCCILC extends the application of
CCILC into non-linear contour tracking cases under compu-
tation inaccuracy of coupling gains.

Future work involves the adaptive design of the para-
meters in the combined PDCCILC & PID control approach
to obtain superior results in both tracking performance and
robustness.
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