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Precision Motion Control for a Piezoelectric Micro-positioning Stage
via Integrating Iterative Learning and Disturbance Observer

FENG Zhao, LING Jie, MING Min, XIAO Xiaohui
(School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China)

Abstract: For the commonly used repetitive trajectory in motion systems, the iterative learning control (ILC) method is
still quite sensitive to non-repetitive disturbance, although it can eliminate repetitive errors effectively via iterations. In order
to achieve precision motion with non-repetitive disturbance for piezoelectric micro-positioning stages, a control strategy
integrating ILC with disturbance observer (DOB) is proposed. Firstly, the hysteresis nonlinearity is treated as repetitive input
disturbance during the iterative process to avoid complex hysteresis modeling. Then, to ensure the stability of the proposed
strategy, the convergence condition is deduced and the suppression of non-repetitive disturbance is analyzed to minimize
convergence error. Finally, comparative experiments are performed on a piezoelectric micro-positioning stage. Results show
that the proposed strategy can compensate hysteresis nonlinearity effectively without hysteresis modeling. The root-mean-
square values of tracking errors are within 0.4% of the stroke for tracking of 5 Hz,10 Hz and 20 Hz triangular waves under
ideal environment. While for the environment with non-repetitive disturbance, the proposed strategy can achieve root-mean-
square value of tracking error at 10.24 nm, that is reduced by 98.73%, 98.67% and 88.24% respectively compared with
the built-in controller, the stand-alone feedback controller and ILC. Besides, the proposed control strategy can accelerate
the convergence speed of ILC. Experimental results validate the effectiveness of the proposed strategy sufficiently, and the
precision motion of the piezoelectric micro-positioning stage can be realized.
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Fig.9 Hysteresis curves obtained with different control

schemes
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Tab.1 Experimental data statistics of convergence errors in the

ideal environment

%%{%% }?E%U%g €rms /nm €max /nm
PID 560.139 719.965
FB 450.775 581.751
S5Hz
ILC 3.794 42.866
ILC+DOB 3.611 36.411
PID 911.586 1354.959
FB 776.617 1223.619
10Hz
ILC 7.567 73.911
ILC+DOB 6.604 64.285
PID 1372.385 2520.160
FB 1313.453 2110.402
20Hz
ILC 20.823 145.553
ILC+DOB 18.587 132.346

M1 5K 10 FA] LLE HiZ-F & W E K PID
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Fig.10 Curves of e,y and e, obtained with different control

EXANVC 1

schemes in the ideal environment
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Fig.11 Curves of e, and e« obtained with different control

schemes under disturbances
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Tab.2 Experimental data statistics of errors at the 10th iteration

under disturbances

IS €ms /NM Cmax /MM
PID 808.983 1191.763
FB 773.932 1142.915
ILC 87.161 173.013
ILC+DOB 10.248 78.060
5
£ 4t
=
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Fig.12 Tracking results and errors at the 10th iteration under
disturbances

5 %5 (Conclusion)
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