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Abstract: For the commonly used repetitive trajectory in motion systems, the iterative learning control (ILC) method is

still quite sensitive to non-repetitive disturbance, although it can eliminate repetitive errors effectively via iterations. In order

to achieve precision motion with non-repetitive disturbance for piezoelectric micro-positioning stages, a control strategy

integrating ILC with disturbance observer (DOB) is proposed. Firstly, the hysteresis nonlinearity is treated as repetitive input

disturbance during the iterative process to avoid complex hysteresis modeling. Then, to ensure the stability of the proposed

strategy, the convergence condition is deduced and the suppression of non-repetitive disturbance is analyzed to minimize

convergence error. Finally, comparative experiments are performed on a piezoelectric micro-positioning stage. Results show

that the proposed strategy can compensate hysteresis nonlinearity effectively without hysteresis modeling. The root-mean-

square values of tracking errors are within 0.4% of the stroke for tracking of 5 Hz,10 Hz and 20 Hz triangular waves under

ideal environment. While for the environment with non-repetitive disturbance, the proposed strategy can achieve root-mean-

square value of tracking error at 10.24 nm, that is reduced by 98.73%, 98.67% and 88.24% respectively compared with

the built-in controller, the stand-alone feedback controller and ILC. Besides, the proposed control strategy can accelerate

the convergence speed of ILC. Experimental results validate the effectiveness of the proposed strategy sufficiently, and the

precision motion of the piezoelectric micro-positioning stage can be realized.

Keywords: piezoelectric micro-positioning stage; iterative learning control; disturbance observer; precision motion con-

trol
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2 Experimental
setup and system identification
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Fig.1 Experimental system



40 6 827

Physik Instrumente 0 100 V

E-509.C3A Physik Instrumente

18 analog to digital converter

ADC Simu-

link Real-Time

Matlab/Simulink

2.2
2(a) v(t)

H[v](t)
w(t)

y(t) P(s)
H[v](t)

dh(t) [19]

2(b)

(a) 

v(t)
P(s)

w(t) y(t)
H[v](t)

v(t)
P(s)

y(t)

dh(t)+

+

(b) 

2

Fig.2 Simplification of the piezoelectric micro-positioning

stage model
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Fig.3 Frequency responses of the piezoelectric

micro-positioning stage

3 Design of the
precision motion controller

3.1
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Fig.4 Control framework of ILC

QILC ILC

QILC

ILC

(8)

i
(7)

u∗
ff(k) =

QILCL[(1−T )r(k)− Jdi(k)]
1−QILC(1−LJ)

(9)

i+1

ei+1(k) = r(k)− yi+1(k) (10)

di+1(k) (2)

(9) (10)

ei+1(k) = (1−T )r(k)− Ju∗
ff(k)− Jdi+1(k)

= (1−T )r(k)−
QILCL[(1−T )r(k)−Jdi(k)]

1−QILC(1−LJ)
u∗

ff(k)− Jdi+1(k)

=
(1−T )(1−QILC)

1−QILC(1−LJ)
r(k)+

J[
QILCLJ

1−QILC(1−LJ)
di(k)−di+1(k)] (11)

(11) QILC = 1 ILC

J(di(k)−di+1(k))
0 di(k) �= di+1(k)

ILC

ILC

3.2

DOB

[20-21] DOB

5

DOB i
dest(k) m

P−1
n (z) Pn(z)

QDOB(z)

r(k)

u(k)

+

− −

−

+ +

+

++

e(k)

Cfb(z)

ufb(k)

d(k)
y(k)

P(z)

Pn
−1(z)

z−mdest(k)

QDOB(z) DOB

5 DOB

Fig.5 Control framework of DOB with outer feedback loop
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Fig.6 Control framework integrating ILC with DOB
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Fig.7 Amplitude-frequency responses for the learning function

and the inverse model of the nominal plant
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Fig.9 Hysteresis curves obtained with different control

schemes

4.2.2
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Tab.1 Experimental data statistics of convergence errors in the

ideal environment

erms /nm emax /nm

5 Hz

PID 560.139 719.965

FB 450.775 581.751

ILC 3.794 42.866
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10 Hz
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FB 776.617 1223.619

ILC 7.567 73.911

ILC+DOB 6.604 64.285

20 Hz

PID 1372.385 2520.160

FB 1313.453 2110.402

ILC 20.823 145.553

ILC+DOB 18.587 132.346

1 10 PID
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Tab.2 Experimental data statistics of errors at the 10th iteration

under disturbances

erms /nm emax /nm

PID 808.983 1191.763

FB 773.932 1142.915

ILC 87.161 173.013

ILC+DOB 10.248 78.060
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Fig.12 Tracking results and errors at the 10th iteration under

disturbances
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