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Abstract

In precise motion systems, feedforward controller is a key component for significant performance enhancement. However, traditional iterative learning
control (ILC) works efficiently under strictly repetitive reference input, and the performance of model-based feedforward controllers is limited by the
non-minimum phase zeros and modeling uncertainties during executing tasks. In this paper, a model-data integrated ILC is proposed for flexible track-
ing, where the stable part of the identified model is utilized to compose the model-based part, and the modeling error and gain mismatch are compen-
sated by the data-driven approach via constructing a (parameterized finite impulse response filter. In order to diminish the effect of noise, an
instrumental variable method is adopted in the cost criterion. The proposed controller has an analytic solution and retains stability during iterations,
which is verified on a piezo nanopositioner. Comparative experimental results indicate that the proposed controller can realize flexible tracking in com-
parison with norm optimal ILC, and achieve the best performance compared with zero-phase-error tracking controller and polynomial basis functions

feedforward controller.
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Introduction

Precise motion tracking plays an important role in many
modern industrial equipment and scientific instruments, espe-
cially at microscale and below. Hence, precise motion control
is essential for applications such as wafer stages (Lan et al.,
2007), atomic force microscopes (AFMs) (Binnig et al., 1986),
information storage (Eleftheriou et al., 2003) and so on. In
general, feedback-only design cannot achieve the best perfor-
mance for the practical and fundamental algebraic restric-
tions (Lee and Salapaka, 2008). The combination of feedback
and feedforward controllers is a promising control scheme,
where the feedback controller is designed to retain stability
and attenuate unknown disturbances and noise, and the feed-
forward controller can compensate the tracking errors and
known disturbances. Therefore, the design of a feedforward
controller is a key component for significant performance
enhancement.

Iterative learning control (ILC) is a popular feedforward
controller for repetitive reference tracking. The tracking errors
are compensated by learning from the previous iterations and
updating the control signal for the next iteration (Bristow
et al., 2006; Freeman et al., 2010; Wang et al., 2013). The con-
vergence property and robustness to uncertainties and distur-
bances have been widely studied in Norrlof and Gunnarsson
(2010), Ahn et al. (2007) and Norrlof (2004). However, a key
assumption for traditional ILC is that the reference signal

should be strictly repetitive (Bristow et al., 2006), and the
change of reference during iterations will deteriorate tracking
performance significantly, and even result in system diver-
gence (Meulen et al., 2008). In this regard, traditional ILC has
lower ability for flexible tracking.

In order to minimize tracking errors and maintain tracking
flexibility simultaneously, different tasks were constructed by
the repeated basic tasks trained via ILC and the optimal con-
trol signal was obtained by fitting the relevant basic tasks or
primitives to realize flexible tracking in Hoelzle et al. (2011)
and Radac et al. (2015). It should be noted that the tracking
references are limited by the numbers of the basic tasks or pri-
mitives. Although providing flexible tracking to some extent,
these methods cannot track arbitrary references.

To improve tracking flexibility further, model-based feed-
forward controllers provide good performance via approxi-
mate inversion of plant, such as high-order feedforward
(Lambrechts, 2005). However, for systems with non-
collocated actuators and sensors, such as nanopositioner,
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where non-minimum phase (NMP) zeros always exist
(Clayton et al., 2009), direct inversion results in unstable feed-
forward controllers. To overcome this problem, some approx-
imate inversion methods have been proposed. These include
zero-phase-error tracking controller (ZPETC) (Tomizuka,
1987), zero-magnitude-error tracking controller (ZMETC)
(Butterworth et al., 2012) and non-minimum-phase zeros
ignore controller (Fujimoto et al., 2001). The performance of
model-based feedforward controllers hinges on the accuracy
of the identified model. However, the variation of plant is
inevitable during executing tasks for complex systems and
modeling error will deteriorate the performance severely for
precise tracking.

The modeling errors can be eliminated by data-driven
methods (Heertjes and Van Engelen, 2011; Janssens et al.,
2013; Kim and Zou, 2013). The control input or parameters
can be obtained via calculating the collected data without the
knowledge of the plant. In Kim and Zou (2013) and Janssens
et al. (2013), the control signals were updated by estimating
the impulse response and nonparametric model in frequency
domain respectively. However, those methods are still sensi-
tive to reference variation. The polynomial basis functions
were employed as the feedforward controller by constructing
the finite impulse response (FIR) filter for flexible tracking
(De Wijdeven and Bosgra, 2010; Meulen et al., 2008).
Although the FIR filter is always stable and exists analytic
solution, it can only approximate the system with finite poles
that is rare in practice for complex dynamic system. On the
other hand, rational basis functions parameterized as an infi-
nite impulse response (IIR) filter were also proposed to
approximate the plant inversion containing both poles and
zeros via ILC (Bolder and Oomen, 2015; Van Zundert et al.,
2016). Despite that the method can capture the dynamics
effectively, the solution is nonanalytic because the structure
of IIR filter is non-convex for optimization. Moreover, the
extra tedious iterations should be processed to obtain the
parameters and the stability cannot be guaranteed.

Hence, it can be concluded that traditional ILC is sensitive
to reference variation, model-based feedforward controllers
have low tolerance on modeling error and the implementation
of ILC with rational basis functions is complex. To tackle
above drawbacks, a model-data integrated ILC for flexible
tracking is proposed in this paper. The poles and stable zeros
are made use of to compose the model-based part and the
modeling error as well as gain mismatch are compensated by
data-driven approach via constructing a parameterized FIR
filter to make an analytic solution. Besides, similar to Boeren
et al. (2015, 2016), an instrumental variable (IV) method is
utilized for unbiased estimation to obtain the optimal para-
meters and diminish the effect of noise. The proposed method
can track varying references and maintain precise tracking
performance simultaneously with the merits of simplification
and practicability for application.

The rest of paper is organized as follows. In ‘Problem for-
mulation’, the problem for flexible tracking is stated. The
design of the proposed controller is described in ‘Model-data
integrated iterative learning control’. Experiments on a piezo
nanopositioner and comparisons of the results are elaborated
in ‘Application to a piezo nanopositioner’ and the
‘Conclusion’ completes the paper.
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Figure |I. Block diagram of the feedback-feedforward control scheme.

Problem formulation

System description

A single-input-single-output (SISO), discrete-time and linear
time-invariant system is considered in this paper. The control
scheme is showed in Figure 1. P(z) and Cp(z) with forward
time-shift operator z indicate the plant and feedback control-
ler. y; is the plant output when the input reference is »; during
the i iteration. The control force u; is determined by the sum
of the feedforward control signal uff; and feedback control sig-
nal ufb; together. ¢; is the tracking error and v; is the unknown
noise.

Considering the signal sequences with length N, the system
can also be presented in lifted domain (Bristow et al., 2006).
Take P(z) with a relative degree m, for example. u;(k) is the
input at the time k € {0,1,...,N — 1} and y;(k) is the output
at the time k € {m,m + 1,..,N + m — 1}, then the dynamics
of P(z) is equivalent to a N X N dimensional lifted matrix with

yi(m) h(m) 0 .0
yim+1) | | hm+1) h(m) . 0
yi(N + m—1) N +-m71) N +-m72) h(;n)
Vi P
u,(O) V[(O)
ul(l) V[(l)
. : (])
ui(N—1) vi(N—1)

where A(k), k€ {mm+1,.,N+m—1} is the impulse
response of P(z), given by

P(z)=~h(m) + h(m + Dz"' + h(m + 2)z72 + ...
+HN + m=1)z YD 2)

and other lifted matrices expressed in bold in this paper are
calculated similarly as P(z).

According to Figure 1, the output and tracking error of
the plant are obtained as

y; = Tr; + SPuff; + Sv; (3)
e; = Sr; — SPuff,—Sv; 4)

where S, T and SP are the lifted matrices of sensitive transfer
function S(z) = (1 + P(z)C/b(z))_l, complementary sensitivity
transfer function T'(z) = 1 — S(z) and process sensitive trans-
fer function S(z)P(z), respectively. Hence, for repetitive refer-
ence, the error in i + 1 iteration is denoted as

e+ =8ri+1— SPuff; , 1 —Sv;+ | (5)
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Under the assumption that the noise is equal to zero and
ri+1 = r;, the error propagation from the i" to i + 1'" itera-
tion can be expressed as

= ¢ — SP(uff, , \—uff)) (6)

€i+1

Norm optimal iterative learning control

Norm optimal iterative learning control (NOILC) is a popu-
lar feedforward controller via minimizing the quadratic criter-
ion of the tracking error and control signal (Gunnarsson and
Norrlof, 2001). The optimal control force is calculated by the
following cost criterion.

Definition 1: The cost criterion for NOILC algorithm is
described as

S = e+ iliw, + lffy o llw, + luffi o = wffills,, (D)

where [ x5y = WTxW,x € RY, W, is a N X N positive-defi-
nite matrix and W,,Wy, are N XN positive-semidefinite
matrices. The optimal control signal uff" is obtained by

uff': = arg min J (8)
uffeR"

The solution of equation (8) is given by Theorem 1.
Theorem 1: The analytic solution of NOILC that meets equa-
tion (8) is described as

uffi 1\ = Quouff; + Lnoe;, with

Qno = (SP)TWe(SP) + Wy + Wau) ™ (SP)We(SP) + Wa)

Lno = ((SP)' We(SP) + Wy + W)~ (SP)' W,

)

) T
Proof: Substitute equation (6) to <%) , and it can be
deduced as ‘

T
> = 2(SP) ' We(SPuff; , | + 2Wauff; . | + 2Wautff; , |

(10)

Setting equation (10) to zero and rearranging the solution,
Theorem 1 is obtained.

NOILC can achieve excellent performance when the refer-
ence is strictly repetitive. For W, >0 and W, = 0,Wg4, = 0,
the steady state control force can be found as

( o,
ouff; .
—2(SP)"W.e; — 2(SP)" W (SP)uff; — 2Wg,uff;

uff = P 'r; (11)

Hence, according to equation (6), the error of next iteration is
demonstrated as
ei+]:SI’iJr]—SPllf/*:SI’iJr]—Sl’i (12)
From equation (12), it can be concluded that if the reference
is repetitive, the convergence error is zero, and if r; + | # 1y,
the tracking performance will be deteriorated significantly.
That is to say that the traditional ILC cannot handle flexible

Figure 2. Control scheme of the proposed controller.

tracking perfectly. Besides, the design of NOILC relies on the
accurate model to obtain SP. Although in Janssens et al.
(2013), a data-driven NOILC was proposed without modeling
process, an extra impulse response experiment should be pro-
cessed firstly and the estimation of impulse response is biased.

Control objective

In brief, for flexible tracking with excellent performance, a
model-data integrated ILC is proposed in this paper to allevi-
ate the assumption that the references to track should be same
in traditional ILC. The control object is listed as follows:

(1) The feedforward controller has the ability to track
varying references.

(2) The optimization of the cost criterion has an analytic
solution.

(3) The trial for experiments is minimum and the control-
ler is stable during iterative process.

(4) The estimation of parameters is unbiased, despite that
noise exists.

Model-data integrated iterative learning
control

Feedforward controller parameterization

Similar to model-based feedforward controllers, the control
force uff; should be connected to references 7; directly to han-
dle the variation of references. The control scheme of model-
data integrated ILC is illustrated in Figure 2. Hence, the con-
trol force of the feedforward controller is obtained by

(13)

According to equation (5), the error at iteration i + 1 is calcu-
lated by substituting to equation (13),

uffi = Cy(@)ri

ei+1=SE(1-PE)Cy@)ri+ 1—SE)vi+1 (14)
if the noise is neglected, the error of each iteration will be zero
with Cy(z) = P(z)”!, that is, the inversion of P(z). Therefore,
the object (1) is achieved under the control scheme.

For general model-based controllers, the control perfor-
mance is determined by the accuracy of the identified model
P(z), which is difficult to obtain in practice for complex
dynamics. Hence, the feedforward controller in this paper is
parameterized as a model-data integrated feedforward con-
troller. The identified poles and stable zeros compose the



Transactions of the Institute of Measurement and Control 00(0)

model-based part and the modeling error as well as gain mis-
match is compensated by data-based approach.

Considering the plant P(z) with NMP zeros, it can be
decomposed into the stable part and unstable part as ZPETC,

B(2)Bu(2)

P(z) = i 5

(15)
where A(z) contains the identified poles, and B(z),B,(z) are
composed by stable zeros and unstable zeros respectively.
The model-base part is obtained by inverting the poles and
stable zeros in order to stabilize the controller. Therefore, the
model-based part C,,;(z) in Figure 2 is expressed as

A(2)
z9B(z)

Crn(2) = (16)
where d is the difference between poles and stable zeros to
make C,;(z) causal. Being different from the design of
ZPETC, a data-based FIR filter is adopted to compensate the
NMP zeros caused inversion error and model uncertainties
through (teration. The structure of data-based part is
expressed in Definition 2.

Definition 2: The feedforward controller of the data-based
part Cyp(z,0;) parameterized as a FIR filter structure is
defined as

Canl(z,0) = > 0,[j]z”

j=1

(17)

here, §; € R" is the parametric vector of the FIR filter coeffi-
cients. In lifted domain, equation (17) can also written as

Can(0) = > ,0:]]

j=1

(18)

where ¢; is the lifted matrix of z”, which indicates the j-step
time delay for the input signal.

Therefore, according to Figure 2, the model-data inte-
grated feedforward controller Cy(z, 8;) and feedforward con-
trol force uff; are parameterized as

Cy(z,0;) = Cap(z,0:)Cyi(2)

uffl = Cff(Z, Oi)ri

(19)
(20)

The parameters are linear to Cy(z, ;) from equation (17)
and equation (18). Hence, the optimization problem with
quadric form is convex. Besides, the stable part of identified
model and data-based part with FIR filter structure always
guarantee the stability of the proposed controller so that the
object (2) and (3) are realized.

Parameters optimization

To obtain the parameters in equation (18), a data-based
method is adopted to optimize the tracking performance.
Substituting equation (19) to equation (3), the output in the
i iteration is given as

Yi = SP(Cpp + Cy(6)r; + Sv; (21)

Assuming that v; = 0, equation (21) can be rewritten as

SPr; = (Cpy + C(8)) 'y, = CO) ', (22)
where SP means the estimation of SP with the measured data
y; and C(6;) is the lifted matrix of C(z) = Cp(z) + Cyl(z, 0)).
Hence, the estimated error of next iteration is obtained by
€10+ 1) = & — (g0« D=Cy0)CO) y;  (23)
Furthermore, the term C(6;)"'y, can be deemed as the sig-
nal y; filtered by C(z)™'. However, C(z)"' may be unstable
during iterative process. A technology introduced in Kinosita
et al. (2002) is used in this paper that separates the stable and
unstable mode of C(z)~!, as expressed in equation (24)

C) "' =C@ e + C) (24)

-1
unstable
which can be obtain by stabsep command in MATLAB. The
stable part C(z)s’l;b,e is used to filter the forward time of y;, and
the unstable part C(z), L ... is used to filter the negative time
of y;, which can be calculated off-line after each iteration. In
the following section, the signal y; filtered by C(z)~! is calcu-
lated by the above method.

It should be noted that equation (23) only contains the
measured signals without the plant information. However,
the noise always exists in the closed-loop system, such as the
quantization noise of sensors, which will result in a biased
estimation of 0; (Boeren et al., 2015). Hence, an instrumental
variable (IV) method (Ljung, 1999) is utilized for an unbiased
estimation. The cost criterion with IV is defined as follows.

Definition 3: The cost criterion to obtain optimal parametric
vector is given as

. 2
SO 1) = [[WTe1(6i+ )|y, + llueff; 4 1(6: 1)”%v,, +

llff; 10+ 1) — uff sy, (25)

where W € RV *" is the IV.

The selection of W is important to estimate the optimal
parameters. In general, W should be uncorrelated with noise
v;, and correlated with #; and y;. Hence, in this paper, W is
chosen as,

W= [gri, gy, .. i) (26)

And the object (4) is achieved via equation (26).

Model-data integrated control law

The control law is calculated by minimizing the cost criterion
J2(0; + 1) to get
0" :=argminJ,(0; + 1) (27)
0cR"

The analytic solution of equation (27) is given by Theorem 2.
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Theorem 2: The control law of model-data integrated ILC is B
demonstrated as
10} 1
0i+ 1= QMDI 0,- + LMDI ei,with -g
H= (l/VTC””"I’C(Z)’I,y,)T WTWeC’"”'/’C(z)",y, % 81 i
+ Cont, ) Wl Contr,) + Costy,) W Conth,) | 26 |
Quor = H\(W Custhey 1, )W Wb, 2 5, |
+ (Conih,) Wa o)) K
Lyioi = H\(W' Costcr, ) WTW,) 27 1
_ 0 : ' : '
Where1 Clz) = C;bﬁZ) +Cp( 00, e, = W CE Ny, 0 0.1 0.2 0.3 0.4 0.5
C@) ™ yis - ,C(2) " yi, and @, = [hyri, Pyt ... ] Time(s)

Proof: Substitute equation (23) to Definition 2, and use the
following equation

(| Ax + bl[g)

=2(4x + b)"'QA4
ax

(29)
where x,b € R". A € RV *" and Q = QT € RV *¥_ By expres-
sing as lifted matrices and differentiating J,(0; + ;) with
respect to 0; 4+ 1, it is obtained that

1 (250 )\ _ T T g T
2 ( 30, + | -w Cmb‘l’c(z)*“yi) w
We(e; — Cmbll’c(z)*‘,yl(oi +1—6)

+ (Costh,,) Wu( G, )0, .| + (Cots,)"

Wa(Costp, )0, | — 0,) (30)
Setting the above equation to zero and rearranging the
terms 0; 1 1,0; and e¢;, Theorem 2 is obtained in lifted domain.
Therefore, the closed-loop transfer function from r; 4| to
yi + 1 can be expressed as

P)(Cylz,0;+1) + Cp(2)

Gu(z) = 1 + P(z)Cp(2)

(1)

It should be noted that the stability of G(z) is guaranteed
if all poles of 1 + P(z)Cp(z) lie in the unit circle because equa-
tion (30) results in the convergence of @;.; and a stable
Cﬁ‘(Za 0+ 1)

Combining the above results, the following design proce-
dure is proposed for flexible tracking, which represents the
main contributions of this paper.

Procedure 1: The feedforward controller Cpy(z,0;+1) is
obtained by the following steps:

(1) By identifying the plant, C,,;(z) is obtained according
to equations (15) and (16). Set the initial value of 6,
to zero.

(2) Collect the measured signals e; and y;.

(3) Caleulate ey, = [ C) 7, CE) v, th, C) )
and construct instrumental variable W by equation

(26).
(4) Calculate 0, , | based on Theorem 2.
(5) Construct the feedforward controller

C//’(Z, 0,+1)= ( 0+ 1[f]2j> Cunp(2).
=1
(6) Setitoi+ 1, and repeat step (2) to step (5).

Figure 3. Nominal fourth-order reference trajectory.

Simulation case

To verify the proposed controller preliminarily, a two-mass
spring motion system in Boeren et al. (2015) is used for simu-
lation. A fourth-order reference trajectory (Lambrechts,
2005) is adopted and the nominal reference is plotted in
Figure 3. Ten difference references were performed with the
parameters: rma = 12~14rad, vmax = 9000~10000rads™!,
Amax = 9000~10010rads2, Jmax = 23~25rads3, which were
generated randomly and the reference changed after each
iteration. The sample rate is 1000Hz and the noise with stan-
dard deviation of 0.002rad was injected into the simulation
model.

In order to evaluate the performance of the proposed con-
troller, the following four feedforward controllers were used
for comparison:

(1) C;: model-based feedforward controller ZPETC
(Tomizuka, 1987).

(2) C,: NOILC (Bristow et al., 2006) in Theorem 1.

(3) Cj5: polynomial basis functions feedforward controller
in Boeren et al. (2015).

(4) C4 model-data integrated ILC proposed in this
paper.

Figure 4 shows the results of the Root-Mean-Square (RMS)
errors and maximal (MAX) errors of 10 iterations with n=4.
For C;, C; and C,, the iterative curves are smooth from i=2 to
i=10, whereas the curves with C, shake fiercely because tradi-
tional ILC could not handle the varying references. Although C,
is not sensitive to the change of reference, the performance is still
limited by the NMP zeros of the plant which results in an
approximate inversion. According to Figure 5, the performance
of Cy, is superior to C; because the structure of Cy is an IIR filter
that contains both zeroes and poles to capture the resonance
peak at 29.3 Hz and anti-resonance peak at 16.3 Hz. However,
C; can only approximate the lower frequency range, which dete-
riorates the performance.

Application to a piezo nanopositioner

Experimental setup

A three-axis piezo nanopositioner (P-561.3CD, Physik
Instrumente) was used for experiments. To perform the four
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Figure 4. RMS and MAX errors in simulations.

controllers, only the x axis with a stoke of 100pm was experi-
mented for comparison. The control input voltage (0-10 V) is
produced by 16-bit digital to analog converters (DACs) of
the data acquisition card (PCI 6289, National Instrument) for
the piezo amplifier module with a fixed gain 10 (E-503.00,
Physik Instrumente) and the sensor data is collected by the
data acquisition card (PCI 6289, National Instrument)
equipped with 18-bit analog to digital converters (ADCs)
through sensor monitor (E-509.C3A, Physik Instrumente).
The controllers were designed in Matlab/Simulink on develop
PC and implemented on the target PC in real-time after com-
piling. The sampling frequency of the system is set to 10 kHz.
Figure 6 shows the experimental setup.

P(z) =

50

(=]
——

O
3
:

-100

180 pm —

Phase(deg)
=}

©
S

-180
10°

Frequency(Hz)

Figure 5. Bode diagram of nominal model and inversion of C3 C, at the
10™ iteration in simulations.

In order to identify the system, a set of 100mV swept sine
waves between 0.1Hz and 500Hz were applied to the x axis. It
should be noted that a low amplitude signal was used in order
to minimize the hysteresis nonlinearity. A continuous transfer
function was obtained by invfreqs command in MATLAB,
and discretized via zero-order holder (ZOH) method. The
transfer function of P(z) is given by

0.011003(z — 0.9967)(z2 — 2z + 0.9996)(z> — 1.7z + 0.9532)(z2 — 2.03z + 5.045)

(z — 0.796)(z — 0.9969)(z% — 2z + 0.9995)(z2 — 1.418z + 0.6218)(z2 — 1.544z + 0.9635)

(32)

Figure 7 shows the match between the measured and iden-

tified open-loop frequency response. Besides, it is clear that a

Piczo / |
Nanopositioning Target

i \ = Y
Development
PC

Piezo Amplifier

Module and
Sensor Monitor

[T

Stage

ATV
i
Ty

Simulink Real-Time Plant

. - : Piezo
PCI Bus l6-b_1‘t i Amplifier '
DAC ' Module :
rCep| | 1 |
_> — | E E
«— i— H s

18-bit " Sensor

PCI Bus ADC | Monitor

Figure 6.

The experimental setup of nanopositioner (a) Experimental platform (b) Block diagram.
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Figure 8. Varying references for experiments.

Table I. Statistical results of fixed reference tracking at the 8%
iteration.

Controller RMS Errors(nm) MAX Errors(nm)
(of 49.65 138.70
C, 5.88 28.45
G 30.80 99.03
Cs 16.01 62.17

pair of NMP zeros exists according to equation (32), which is
common in nanopositioning system. Therefore, the model-
based part of the proposed controller was obtained by the
poles and stable zeros in equation (32), given by

Figure 9. RMS and MAX errors of fixed reference tracking.

To deal with the low-gain margin of nanopositioning sys-
tem, a notch filter to suppress the effect of the dominant reso-
nant peak was implemented for the cascade of a high-gain
proportion-integration (PI) controller that can be used to
account for hysteresis and creep nonlinearity. Three references
defined for experiments are shown in Figure 8. r; is a 10 Hz
triangular wave with the peak-to-peak amplitude of 1.5um.
The amplitude of r, expand 1/3 times relative to r;, that is,
2pm and r3 is equal to r, with 0.01s delay. The amplitude is
small so that the system behaver is approximately linear.

Results of tracking fixed reference

Eight iterations were performed for fixed reference tracking
with reference r,. For Cs and C,, the order of FIR filters were
chosen as n=4, and the initial value of @, was set to zero so
that the results of the first iteration is with feedback control-
ler only.

The RMS and MAX errors versus iteration are shown in
Figure 9. The tracking performance with feedback controller
only was the worst with the RMS error of 0.3386pm and
MAX error of 0.4844pm for the phase delay and no ability to
compensate repetitive errors. The errors of the last iteration
were plotted in Figure 10 and the statistical results at 8'" itera-
tion were listed in Table 1. For feedforward controllers, the
errors of C; were the largest because it was designed by
model-based method and there were no parameters changing
during iterations so that the modeling error cannot be com-
pensated. C, achieved the best performance with RMS error
of 5.88nm and MAX error of 25.48nm respectively. It should
be noted that compared to Cs with n=4, for repetitive refer-
ence tracking, C, can be viewed as the FIR filter with n=N.

(z — 0.796)(z — 0.9969)(z> — 2z + 0.9995)(z> — 1.418z + 0.6218)(2 — 1.544z + 0.9635)

Cmb (Z) =

2(z— 0.9967)(z2 — 2z + 0.9996)(z2 — 1.7z + 0.9532)

(33)
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Figure 10. Tracking errors of fixed reference at the 8" iteration.
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Figure I1. RMS and MAX errors of varying references tracking.

For the proposed controller C4, the RMS error was 16.01nm
and the MAX error was 62.17nm, which outperform the per-
formance of C; for the structure of IIR filter that can approxi-
mate the dynamics more accurately than FIR filter. However,
C, can achieve the best performance with fixed reference
tracking for the characteristic of improving the system

Table 2. Statistical results for varying references.

bandwidth, which can be concluded from Figure 10, where
the errors of C, are minimum although at the corner of trian-
gular wave.

Results of tracking varying references

To demonstrate the ability of flexible tracking of the pro-
posed controller, 15 iterations were conducted in experi-
ments with four different controllers. The references were
shown in Figure 8, where the input signals were ry, r, and r3
between the 1% iteration and 5'" iteration, 6 iteration and
10" iteration, 11" iteration and 15" iteration, respectively.
Similar to fixed reference tracking, the order of FIR filter
was chosen as n=4 for C; and C,4, and the initial value of
0, was set to zero.

The tracking results were demonstrated in Figure 11 and
Figure 12. The statistical results were listed in Table 2. It is
clear that the four controllers improve the performance signif-
icantly compared with feedback controller only at the 1%
iteration. C, is sensitive to the change of references, which
can be concluded in Figure 11, where the RMS errors change
from 6.01nm to 78.93nm at the 5 iteration and 6 iteration,
from 5.77nm to 234.20nm at the 10" iteration and 11" itera-
tion because the control signal of tradition ILC determined
by errors of previous iterations only have no connection with
references. Cy, C; and C, have the ability to handle varying
references according to Figure 11 and Figure 12. Note that
the errors between the 6 iteration and 10™ iteration increase
lightly for the reference amplitude changing from 1.5pm to
2pm. The performance of C; is deteriorated by the NMP
zeros in the plant and model uncertainties during iterations.
For C; and C,4 taking the 5" jteration as example, Cy
achieved the performance with RMS errors of 10.64nm and
MAX errors of 42.23nm compared with 23.75nm and
74.23nm for C; respectively. The proposed model-data inte-
grated IIR filter structure outperform the FIR filter structure
and can achieve precision flexible tracking simultaneously.

In the perspective of frequency domain, Figure 13 showed
the bode diagram of the nominal model and the inversion of
C; and C, at the 15™ jteration. It demonstrates that C, can
capture the resonance peak at 212 Hz and the anti-resonance
peak at 160 Hz for the contained zeros and poles, whereas C;
can only approximate the lower frequency that deteriorates
the performance.

Controller RMS Errors(nm) MAX Errors(nm)

€s € €0 € €s € €0 €
C, 34.70 51.72 50.76 50.46 95.67 139.70 150.90 142.10
(o} 6.0l 7893 5.77 234.20 25.35 137.40 30.34 677.90
G 23.75 31.05 3171 31.37 74.50 109.90 99.50 91.03
C, 10.64 17.84 17.85 18.01 42.23 77.86 69.52 70.50
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Figure 12. Track errors at the 5™, 6™, 10™ and | 1™ iteration respectively.

20

Magnitued(dB)

10"

.

Phase(deg)

-180 &
10

10!
Frequency(Hz)

Figure 13. Bode diagram of nominal model and inversion of C3, C, at
the 15™ iteration in experiments.

Conclusion

In this paper, a model-data integrated ILC was developed to
track varying references for precise motion systems with com-
plex and NMP dynamics. Compared with pure model-based

feedforward and data-based controller, the proposed method
takes full advantage of the information of identified model to
compose model-based part and the collected data to get opti-
mal parameters of the data-based FIR filter. The effect of
noise was reduced through implementing IV method and the
feedforward controller is stable during iterations. The perfor-
mance was verified through simulation, which shows that the
proposed controller can handle the problem of flexible track-
ing effectively. The controller was also implemented on a
piezo nanopositioner. The experimental results demonstrate
that NOILC achieved the best performance for fixed refer-
ence, whereas the tracking errors increase when the reference
changing. For varying references tracking, the performance
of proposed controller outperforms ZPETC for the compen-
sation of modeling error via collected data and polynomial
basis functions feedforward controller for the structure of IIR
filter that can approximate the inverse plant dynamics accu-
rately. The future work will concentrate upon the improve-
ment of tracking bandwidth, such as minimizing errors at the
corner of triangular wave and realizing flexible tracking on
multiple-input-multiple-output (MIMO) systems.
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