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A Master-slave Cross-coupled Iterative Learning Control for Repetitive Tracking

of Nonlinear Contours in Multi-axis Precision Motion Systems

LING Jie! MING Min' FENG Zhao! XIAO Xiao-Hui'

Abstract In traditional time domain cross-coupled iterative learning control (CCILC) design, the requirements of high
calculation accuracy of coupling gains between axes and low computational efficiency restrict its application to nonlinear
contour tracking in repetitive tasks. This paper presents a master-slave cross-coupled iterative learning control. Based
on the master-slave control design concept, the master motion axis applies time domain CCILC, while the slave motion
axis adopts position domain CCILC (PDCCILC). The proposed PDCCILC control can improve synchronization between
axes as well as relieve the dependence on accuracy of coupling gains, therefore, the efficient contour error vector method
can be adopted to estimate the coupling gains. both stability and performance analyses are conducted using the lifted
system representation method. Simulation and experimental results of the three typical nonlinear contour tracking cases
(i.e., semi-circle, parabola and spiral) with a two-axis micro-motion stage have demonstrated superiority and efficacy of
the proposed controller.
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Table 3 Experimental statistics of tracking performance (pum)
RSRE 2[R Bk IRE Lk
RMS 3.405 3.637 7.566
TDILC & PID
MAX 8.501 8.334 17.429
RMS 1.869 1.924 4.897
TDCCILC & PID
MAX 5.170 6.001 15.420
RMS 1.344 1.197 2.992
PDILC & PID
MAX 4.348 4.696 11.106
RMS 0.821 0.631 1.551
PDCCILC & PID
MAX 2.108 2.907 7.240
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